Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning 'funky' quantum mysteries into computing reality

18.02.2008
The strange world of quantum mechanics can provide a way to surpass limits in speed, efficiency and accuracy of computing, communications and measurement, according to research by MIT scientist Seth Lloyd.

Quantum mechanics is the set of physical theories that explain the behavior of matter and energy at the scale of atoms and subatomic particles. It includes a number of strange properties that differ significantly from the way things work at sizes that people can observe directly, which are governed by classical physics.

“There are limits, if you think classically,” said Lloyd, a professor in MIT’s Research Laboratory of Electronics and Department of Mechanical Engineering. But while classical physics imposes limits that are already beginning to constrain things like computer chip development and precision measuring systems, “once you think quantum mechanically you can start to surpass those limits,” he said.

Lloyd will be speaking about this research at the American Association for the Advancement of Science annual meeting in Boston, on Saturday, Feb. 16, in a session on Quantum Information Theory.

“Over the last decade, a bunch of my colleagues and postdocs and I have been looking at how quantum mechanics can make things better.” What Lloyd refers to as the “funky effects” of quantum theory, such as squeezing and entanglement, could ultimately be harnessed to make measurements of time and distance more precise and computers more efficient. “Once you open your eyes to the quantum world, you see a whole lot of things you simply cannot do classically,” he said.

Among the ways that these quantum effects are beginning to be harnessed in the lab, he said, is in prototypes of new imaging systems that can precisely track the time of arrival of individual photons, the basic particles of light. “There’s significantly greater accuracy in the time-of-arrival measurement than what one would expect,” he said. And this could ultimately lead to systems that can detect finer detail, for example in a microscope’s view of a minuscule object, than what were thought to be the ultimate physical limitations of optical systems set by the dimensions of wavelengths of light.

In addition, quantum effects could be used to make much-more-efficient memory chips for computers, by drastically reducing the number of transistors that need to be used each time data is stored or retrieved in a random-access memory location. Lloyd and his collaborators devised an entirely new way of addressing memory locations, using quantum principles, which they call a “bucket brigade” system. A similar, enhanced scheme could also be used in future quantum computers, which are expected to be feasible at some point and could be especially adept at complex operations such as pattern recognition.

Another example of the potential power of quantum effects is in making more accurate clocks, using the property of entanglement, in which two separate particles can instantaneously affect each other’s characteristics.

While some of these potential applications have been theorized for many years, Lloyd said, experiments are “slowly catching up” to the theory. “We can do a lot already,” he said, “and we’re hoping to demonstrate a lot more” in coming years.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Meteor magnets in outer space
27.05.2019 | University of California - Riverside

nachricht Colliding lasers double the energy of proton beams
27.05.2019 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Colliding lasers double the energy of proton beams

Researchers from Sweden's Chalmers University of Technology and the University of Gothenburg present a new method which can double the energy of a proton beam produced by laser-based particle accelerators. The breakthrough could lead to more compact, cheaper equipment that could be useful for many applications, including proton therapy.

Proton therapy involves firing a beam of accelerated protons at cancerous tumours, killing them through irradiation. But the equipment needed is so large and...

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

AI and high-performance computing extend evolution to superconductors

27.05.2019 | Information Technology

Meteor magnets in outer space

27.05.2019 | Physics and Astronomy

Coat of proteins makes viruses more infectious and links them to Alzheimer's disease

27.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>