Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lunar exploration – Potential UK and NASA collaboration

15.02.2008
The British National Space Centre [BNSC] and the National Aeronautics and Space Administration [NASA ] have today [15th February 2008] issued a report from the Joint Working Group(JWG) on lunar exploration that outlines next steps in possible U.K.-U.S. space exploration cooperation.

A key area of cooperation under consideration is a mission to understand the Moon’s structure, listen for ‘Moonquakes’ and trial the lunar cell-phone network of the future.

The JWG report identified two potential elements of collaboration:
•the implementation of a UK led robotic lunar mission, such as the Moon Lightweight Interior and Telecoms Experiment (MoonLITE) mission;

•the development of science instruments and technology needed for mid-term robotic and human exploration activities.

Commenting on the report Professor Keith Mason, CEO Science and Technology Facilities Council and Chairman of the UK Space Board [BNSC governing body], said,’ This joint report represents a milestone in our cooperation with NASA whilst building upon our longstanding collaboration in such highly successful science missions as Swift, Stereo, Mars Reconnaissance Orbiter and Cassini. The proposed missions provide an opportunity to harness the UK’s world-class expertise in small satellite, communication and robotic technologies focused on exploration of the Moon.”

MoonLITE is a proposed UK led small robotic mission to the Moon. It comprises a satellite which would travel to the Moon, enter its orbit and then release three or four ‘penetrators’ - small missile-like vehicles – distributed over the Moon’s surface. Each penetrator would impact at high speed and embed instruments just under the Moon’s surface designed to reveal the interior structure of the Moon. The satellite orbiter would then act as a telecommunications relay station between the surface penetrators and earth during their 1 year life.

MoonLITE would deliver important new science about the Moon’s interior and history while also testing the space communications network needed by future robotic and human explorers. The US and UK have enjoyed a long history of successful space cooperation. MoonLITE would build on this success and allow both partners the opportunity to take advantage of their particular strengths. NASA is considering several technologies and experiments as potential US contributions to the UK mission.

The proposed next steps involve an international scientific ‘peer-review’ and a more detailed technical study of MoonLITE leading to a definitive cost estimate before a decision to go-ahead is taken. The launch date for MoonLITE is scheduled for no earlier than 2012.

Professor Mason added,” This joint report between the UK and NASA, coupled with the UK’s major role in ESA’s Aurora programme of planetary exploration and our involvement in helping to shape a Global Exploration Strategy, means the UK is fully exploiting and strategically maximising its technological and scientific strengths in space exploration”.

The BNSC-NASA JWG originated from a Joint Statement of Intent for Cooperation in the Field of Space Exploration signed by NASA Administrator Michael Griffin and UK Director General for Science and Innovation Sir Keith O’Nions on April 19, 2007, in Washington, DC.

Peter Barratt | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>