Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser beams help take the twinkle out of starlight

04.06.2002


If you have ever peered down a highway on a sunny day, you have probably seen the rising, wavelike ripples of heated air that distort the appearance of objects near the horizon. Similar disturbances in the atmosphere above us make stars twinkle as their light is distorted on the way down to Earth.



Although twinkling stars inspired a well-known nursery rhyme, the effect hampers astronomers’ attempts to study the heavens. Scientists at Lawrence Livermore National Laboratory are now building systems, known as a synthetic guide stars, to help astronomers accurately account for atmospheric distortions wherever they choose to point their telescopes. Pictures collected by large terrestrial telescopes equipped with such systems often exceed the quality of Hubble Space Telescope images.

Guide stars have long played an important role in correcting atmospheric distortion. Astronomers pick a bright, stable star near a region of the sky that they hope to study and monitor distortions in the guide star image to deduce the optical properties of the atmosphere. They then correct their images with adaptive optics, which distort telescope components to offset atmospherically induced errors. Generally, adaptive optics corrections involve warping light-collecting telescope mirrors with computer controlled motors that respond to changes in the guide star image.


Guide stars and adaptive optics combine to provide stunning pictures of planets, galaxies, and other objects. Unfortunately, astronomers find suitable natural guide stars in only one percent of the sky. At the 2002 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (May 19-23, www.cleoconference.org) meeting in Long Beach, CA, Deanna Pennington explained that she and her colleagues at Lawrence Livermore National Laboratory have now opened up a much larger portion of the heavens with a manmade analog to guide stars. Pennington estimates that the synthetic guide star system can correct for atmospheric turbulence in about three fifths of the sky.

The researchers create their synthetic guide star by beaming a laser through the atmosphere in the direction of an object they wish to study. The frequency of the laser is specifically chosen to excite sodium atoms, causing them to emit yellow light. Sodium is relatively scarce in most of our atmosphere, but incoming meteors deposit a concentrated layer of the atoms in the mesosphere, about ninety kilometers above the earth. The laser paints an artificial star in the sky when it strikes the sodium rich layer.

Pennington points out that natural stars are best for correcting atmospheric distortion. Stars are so far away that they appear to be point light sources effectively located at infinity. Synthetic guide stars, in comparison, are too close to completely eliminate atmospheric errors, but they provide astronomers with seventy-five percent of the benefit offered by natural guide stars.

Any telescope equipped with adaptive optics can benefit from the addition of a synthetic guide star system, but the technology will be indispensable for future, earth-based observations. "Very large telescopes," says Pennington," must use adaptive optics to approach their theoretical performance. Atmospheric turbulence primarily dictates the ultimate resolution a telescope can achieve." Telescope designs being considered for future observatories may sport mirrors thirty to a hundred meters across, and will dwarf even cutting-edge telescopes such as the ten-meter telescope at Keck Observatory in Hawaii. Larger telescopes collect more light and could provide ever high resolution images, provided we correct for the hazy blanket of gas that surrounds our planet.

Although the Keck telescope already uses adaptive optics that rely on natural guide stars, Pennington’s group installed a new sodium guide star system at the observatory last year. Keck’s adaptive optics successfully locked on to the laser-generated guide star in tests performed last December, but modifications to the system interfaces prevented astronomers from using it to collect images. If the final installation stages go as planned, a synthetic guide star shining over Hawaii should help astronomers peer into the heavens by Christmas 2002.

For more information contact:

Deanna Pennington pennington1@llnl.gov
Lawrence Livermore National Laboratory
P.O. Box 5500, L-477
Livermore, CA 94551
925-423-9234


James Riordon | EurekAlert

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>