Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International team establishes unique observatory in Antarctica

05.02.2008
A team of scientists representing six international institutions, including Texas A&M University, has succeeded in reaching the summit of Antarctica – also a monumental achievement for ground-based astronomy -- to establish a new astronomical observatory at Dome Argus on the highest point of the Antarctic Plateau.

Two weeks after arriving Jan. 11 at “Dome A” for only the second time in history, an expedition team led by the Polar Research Institute of China (PRIC) has completed installation work on a revolutionary fully robotic observatory, dubbed PLATeau Observatory or PLATO, that Texas A&M astrophysicist Dr. Lifan Wang predicts will result in new insights into the universe once possible only from space.

“Dome A is believed to be the best site for ground-based astronomy,” explains Wang, one of the leaders of the scientific planning phase of the expedition, who holds the Mitchell-Heep-Munnerlyn Endowed Career Enhancement Professorship in Physics at Texas A&M and is head of the Chinese Center for Antarctic Astronomy. “Unlike the stormy Antarctic coast, the plateau is a very quiet place with very low wind speed. It is the coldest and driest place on Earth. These are critical conditions of a good site at which to build an observatory.”

On Saturday the PRIC team featuring scientists from the National Astronomical Observatories of China carefully buttoned up their instruments and PLATO within the snug confines of the newly installed ground station. They then boarded their snow tractors for the 18-day, nearly non-stop return trip to the coast of Antarctica, leaving both PLATO and their telescopes behind for an 11-month period poised to make astronomical history.

“This permanent facility marks the culmination of centuries of effort to find the best location on the planet from which to observe the universe,” Wang notes. “With a telescope at Dome A, it is possible to achieve near-space quality images at a much lower cost than launching a telescope into space.”

Built by the University of New South Wales (UNSW) in Sydney, Australia, PLATO is designed to operate autonomously for up to 12 months at a time while sending back data via the Iridium satellite network.

Powered by an array of solar panels during summer and small, high-efficiency diesel engines through the darkest winter months, it will be efficient as well as environmentally friendly, according to its developers.

“By minimizing the need for human support, robotic facilities such as PLATO will play an important role in the future of Antarctic research,” says the UNSW’s Dr. Jon Lawrence, who led PLATO’s development.

A global team of scientists will be contributing PLATO’s instruments as part of the 2007-2008 International Polar Year that will see thousands of scientists — including Wang and fellow Texas A&M astronomer Dr. Nicholas Suntzeff, both of the George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy — from more than 60 nations conducting 200 projects examining a range of physical, biological and social research topics. PLATO’s site-testing instruments include cameras that will measure the darkness of the sky, an acoustic radar to measure atmospheric turbulence and a monitor for very short microwave astronomy.

Seven telescopes — four from China, two from Caltech and one from the University of Arizona and the University of Exeter that is partially funded by the National Science Foundation — will take unique images of the heavens toward the South Pole.

One of the most important experiments is a set of four telescopes built at Purple Mountain Observatory, Nanjing, and the Nanjing Institute of Astronomical Optics Technology. Each of the 14.5-centimeter diameter telescopes is equipped with a different filter so that each can observe the sky in a different color or wavelength. The telescopes can view a large field of the sky toward the South Pole area. The system will generate continuous movies of the sky lasting for four months.

“This is a scientific study that can only be done in Antarctica,” Wang explains. “We will be able to study the variability of the stars and search for planets around those far-away stars.”

The 17-person PRIC team began its trek to Dome A in November, leaving Shanghai aboard the Xue Long icebreaker and sailing to Fremantle, where they were met by the 7-ton PLATO observatory, which had made the 4,000-kilometer journey across the Nullabor Plain from Sydney by road. After a further 18 days crossing the Southern Ocean, the Xue Long arrived at Zhongshan station, adjacent to Australia’s Davis Station on the Antarctic coast, where PLATO was loaded onto a sled and filled with the 4,000 liters of jet fuel that will power it throughout the winter. The six-tractor caravan then covered the 1,300-kilometer overland traverse from Zhongshan to Dome A in just three weeks, arriving at the historic site on Jan. 11 for the first time since a PRIC team made the initial journey three years earlier to install an automatic weather station and evaluate the site’s suitability for a permanent station.

Built to withstand some of the most extreme conditions on Earth, PLATO must endure temperatures that drop to -90 C in winter as well as air pressure barely half of that at sea level. The facility must operate completely unattended until the Chinese expeditioners return in January 2009, as there will be no human being within 600 kilometers of Dome A now that the traverse team has departed.

During the next few years, China will spend more than $25 million constructing a permanent station at Dome A. Already there are plans to build an array of large, wide-field telescopes there to generate additional movies of the sky.

Astronomers now are working on the construction of AST3 — the Antarctic Schmidt Telescopes — a system of three, half-meter telescopes expected to find planets around other stars about the size of Earth, hundreds of supernovas useful for cosmological studies and many other variable objects.

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu
http://www.ipy.org
http://mcba11.phys.unsw.edu.au/~mcba/plato/

More articles from Physics and Astronomy:

nachricht Appreciating the classical elegance of time crystals
20.09.2019 | ETH Zurich Department of Physics

nachricht 'Nanochains' could increase battery capacity, cut charging time
20.09.2019 | Purdue University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Wire laser material deposition – a smart way to save costs

24.09.2019 | Trade Fair News

On the trail of self-healing processes: Bayreuth biochemists reveal insights into extraordinary regenerative ability

23.09.2019 | Life Sciences

New method for the measurement of nano-structured light fields

23.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>