Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetism loses under pressure

31.01.2008
Scientists have discovered that the magnetic strength of magnetite—the most abundant magnetic mineral on Earth—declines drastically when put under pressure.

Researchers from the Carnegie Institution’s Geophysical Laboratory, together with colleagues at the Advanced Photon Source of Argonne National Laboratory, have found that when magnetite is subjected to pressures between 120,000 and 160,000 times atmospheric pressure its magnetic strength declines by half. They discovered that the change is due to what is called electron spin pairing.

Magnetism comes from unpaired electrons in magnetic materials. The strength of a magnet is a result of the spin of unpaired electrons and how the spins of different electrons are aligned with one another. This research showed that the drop in magnetism was due to a decrease in the number of unpaired electrons.

“Magnetite is found in small quantities in certain bacteria, in brains of some birds and insects, and even in humans,” commented Yang Ding, the study’s lead author with the Carnegie-led High-Pressure Synergetic Consortium. “Early navigators used it to find the magnetic North Pole and birds use it for their navigation. And now it is used in nanotechnology. There is intense scientific interest in its properties. Understanding the behavior of magnetite is difficult because the strong interaction among its electrons complicates its electronic structure and magnetic properties.”

To study the mineral, the researchers developed and applied a novel technique, called X-ray Magnetic Circular Dichroism (XMCD) at the Advanced Photon Source, a high-energy synchrotron facility. The technique uses high-brilliance circularly polarized X-rays to probe the magnetic state of magnetite as a diamond anvil cell subjects a sample to many hundreds of thousands of atmospheres. The researchers combined their experimental results with theoretical calculations by collaborators* to pinpoint why the magnetic strength changes. The study, to be published in February in Physical Review Letters, reveals the electron-spin configuration in the iron sites of the mineral to be the origin of the phenomenon.

This discovery not only shows the profound effects of pressure on magnetism, it also discloses, for the first time, that pressure induced a spin pairing transition that results in changes in the electron mobility and structure.

“The discovery is important,” Ding said. “It advances our understanding of the correlation of magnetism, electron transport, and structural stability in materials with strong electron interactions, like magnetite.”

“It is not surprising to see that a new phenomenon has been trigged by pressure in the oldest magnet. Pressure can directly change electron-electron interactions by squeezing the spacing between them,” said Ho-kwang Mao, the director of the High-Pressure Synergetic Consortium and the High-Pressure Collaborative Access Team. “In the future, the integration of high pressure with novel synchrotron techniques will no doubt lead to more new discoveries.”

Yang Ding | EurekAlert!
Further information:
http://www.aps.anl.gov

More articles from Physics and Astronomy:

nachricht Immortal quantum particles: the cycle of decay and rebirth
14.06.2019 | Technische Universität München

nachricht Small currents for big gains in spintronics
13.06.2019 | University of Tokyo

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>