Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HiRISE Camera Details Dynamic Wind Action on Mars

24.01.2008
Mars has an ethereal, tenuous atmosphere at less than 1 percent the surface pressure of Earth, so scientists working on The University of Arizona's High Resolution Imaging Experiment, or HiRISE, are challenged to explain the complex, wind-sculpted landforms they're now seeing in unprecedented detail.

The HiRISE camera on NASA's Mars Reconnaissance Orbiter, the most powerful camera to orbit another planet, can see 20-inch-diameter features while flying at about 7,500 mph between 155 and 196 miles above the Martian surface. HiRISE is giving researchers eye-opening new views of wind-driven Mars geology.

One of the main questions has been if winds on present-day Mars are strong enough to form and change geological features, or if wind-constructed formations were made in the past, perhaps when winds speeds and atmospheric pressures were higher, HiRISE team members say.

"We're seeing what look like smaller sand bedforms on the tops of larger dunes, and, when we zoom in more, a third set of bedforms topping those,"

HiRISE co-investigator Nathan Bridges of the Jet Propulsion Laboratory in Pasadena, Calif., said. "On Earth, small bedforms can form and change on time scales as short as a day."

There are two kinds of "bedforms," or wind-deposited landforms. They can be sand dunes, which are typically larger and have distinct shapes. Or they can be ripples, which is sand mixed with coarser, millimeter-sized particles.

Ripples are typically smaller, more linear structures.

HiRISE also shows detail in sediments deposited by winds on the lee side of rocks. Such rock "windtails" show which way the most current winds have blown, Bridges said. Such features have been seen before, but only by rovers and landers, never an orbiting camera. Researchers can now use HiRISE images to infer wind directions over the entire planet.

Scientists discovered miles-long, wind-scoured ridges called "yardangs" with the first Mars orbiter, Mariner 9, in the early 1970s, Bridges said. New HiRISE images reveal surface texture and fine-scale features that are giving scientists insight on how yardangs form.

"HiRISE is showing us just how interesting layers in yardangs are," Bridges said. "For example, we see one layer that appears to have rocks in it. You can actually see rocks in the layer, and if you look downslope, you can see rocks that we think have eroded out from that rocky layer above."

HiRISE shows that some layers in the yardangs are made of softer materials that have been modified by wind, he added. The soft material could be volcanic ash deposits, or the dried up remnants of what once were mixtures of ice and dust, or something else.

"The fact that we see layers that appear to be rocky and layers that are obviously soft says that the process that formed yardangs is no simple process but a complicated sequence of processes," Bridges said.

Scientists since the 1970s Viking missions have puzzled over what appears to be dust covering Mars' 6-to-13-mile-high volcanoes. Near the volcanic summits, the air is about one one-thousandth of Earth's atmospheric pressure.

"HiRISE keeps showing interesting things about terrains that I expected to be uninteresting," said HiRISE principal investigator Alfred McEwen of the UA's Lunar and Planetary Laboratory. "I was surprised by the diversity of morphology of the thick dust mantles. Instead of a uniform blanket of smooth dust, there are often intricate patterns due to the action of the wind and perhaps light cementation from atmospheric volatiles."

HiRISE images show that what covers the slopes of the high Martian volcanoes are definitely dunes or ripples that appear to have an organized 'reticulate' structure possibly formed by winds blowing from multiple directions, Bridges said.

"On Earth, winds blowing from many different directions form what are called 'star dunes,' and these look somewhat like those," Bridges said. "The reticulate surface looks like a network of connected wind-blown dunes and ripples.

"The fact that the air pressure near the volcano tops is so low and the material is dust challenges us to understand what these features are," he said. "Perhaps the dust is clumping together and making sand-size material.

But how this stuff can be blown around this low pressure is at the edge of our understanding of aeolian physics.

"Possibly the bedforms on the volcanoes formed under a different Martian climate in the past, when atmospheric density was greater," Bridges said.

"But I'm not sure that's the case, because you can see evidence that a lot of the mantle appears to be fairly recent."

HiRISE team member Paul Geissler of the U.S. Geological Survey, in Flagstaff, Ariz., has discovered from HiRISE images that dark streaks coming from Victoria Crater are probably streaks of dark sand blown out from the crater onto the surface. Scientists had wondered if wind might have blown away lighter-colored surface material, exposing a darker underlying surface.

Geissler, a member of the Mars Exploration Rover team, is comparing HiRISE images with images the Opportunity rover has taken at Victoria Crater.

Bridges is lead author on the paper titled "Windy Mars: A dynamic planet as seen by the HiRISE camera" in the Geophysical Research letters in December.

McEwen is among the paper's co-authors.

Information about the Mars Reconnaissance Orbiter spacecraft is online at http://www.nasa.gov/mro. The mission is managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, for the NASA Science Mission Directorate. Lockheed Martin Space Systems, based in Denver, is the prime contractor and built the spacecraft. Ball Aerospace and Technologies Corp., of Boulder, Colo., built the HiRISE camera operated by the UA.

CONTACT: Nathan Bridges (818-393-7799; nathan.bridges@jpl.nasa.gov) Alfred McEwen (520-621-4573; mcewen@pirl.lpl.arizona.edu)

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://www.nasa.gov/mro

More articles from Physics and Astronomy:

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

nachricht UT-ORNL team makes first particle accelerator beam measurement in six dimensions
13.08.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>