Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutron stars can be more massive, while black holes are more rare, Arecibo Observatory finds

17.01.2008
Neutron stars and black holes aren’t all they’ve been thought to be.

In fact, neutron stars can be considerably more massive than previously believed, and it is more difficult to form black holes, according to new research developed by using the Arecibo Observatory in Arecibo, Puerto Rico. Paulo Freire, an astronomer from the observatory, will present his research at the American Astronomical Society national meeting in Austin on Jan. 11.

The Arecibo Observatory is managed by Cornell University for the National Science Foundation.

In the cosmic continuum of dead, remnant stars, the Arecibo astronomers have increased the mass limit for when neutron stars turn into black holes.

“The matter at the center of a neutron star is highly incompressible. Our new measurements of the mass of neutron stars will help nuclear physicists understand the properties of super-dense matter,” said Freire. “It also means that to form a black hole, more mass is needed than previously thought. Thus, in our universe, black holes might be more rare and neutron stars slightly more abundant.”

When the cores of massive stars run out of nuclear fuel, their enormous gravitation then causes their collapse then becomes a supernova. The core, typically with a mass 1.4 times larger than that of the sun is compressed into a neutron star. These extreme objects have a radius about 10 to 16 kilometers and a density on the order of a billion tons per cubic centimeter. Freire says that a neutron star is like one single, giant atomic nucleus with about 460,000 times the mass of the Earth.

Astronomers had thought the neutron stars needed a maximum mass between 1.6 and 2.5 suns in order to collapse and become black holes. However, this new research shows that neutron stars remain neutron stars between the mass of 1.9 and up to possibly 2.7 suns.

“The matter at the center of the neutron stars is the densest in the universe. It is one to two orders of magnitude denser than matter in the atomic nucleus. It is so dense we don’t know what it is made out of,” said Freire. “For that reason, we have at present no idea of how large or how massive neutron stars can be.”

From June 2001 to March 2007, Freire used Arecibo’s “L-wide” receiver (sensitive to radio frequencies from 1100 to 1700 MHz) and the Wide-Band Arecibo Pulsar Processors – a very fast spectrometer on the Arecibo telescope – to examine a binary pulsar called M5 B, in the globular cluster M5, which is located in the constellation Serpens. Like a lighthouse emits light, a pulsar is a strongly magnetized neutron star that emits large amounts of electromagnetic radiation, usually from its magnetic pole. As in the case of a lighthouse, distant observers perceive a sequence of pulsations, which are caused by the rotation of the pulsar. In the case of M5 B, these radio pulsations arrive at the Earth every 7.95 milliseconds.

These radio pulsations were scanned by the wide-band spectrometers once every 64 microseconds for 256 spectral channels, and then recorded to a computer disk, with accurate timing information. The precise arrival time of the pulses were then used by the astronomers to accurately measure the orbital motion of M5 B about its companion. This allowed the astronomers to estimate the mass (1.9 solar masses) of the pulsar.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Astronomers see 'warm' glow of Uranus's rings
21.06.2019 | University of California - Berkeley

nachricht A new force for optical tweezers awakens
19.06.2019 | University of Gothenburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>