Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputer could throw light on dark energy

11.01.2008
Cosmologists at Durham University’s world-leading Institute for Computational Cosmology (ICC) have run a series of huge computer simulations of the Universe that could help solve one of astronomy’s greatest mysteries. The results tell researchers how to measure dark energy – a force that counteracts gravity and could decide the ultimate fate of the cosmos.

The findings, to be published on Friday, 11 January in the Monthly Notices of the Royal Astronomical Society, will also provide vital input into the design of a proposed satellite mission called SPACE – the SPectroscopic All-sky Cosmic Explorer - that could unveil the nature of dark energy.

The discovery of dark energy in 1998 was completely unexpected and understanding its nature is one of the biggest problems in physics. Scientists believe that dark energy, which makes up 70 per cent of the Universe, is driving its accelerating expansion. If this expansion continues to accelerate experts say it could eventually lead to a Big Freeze as the Universe is pulled apart and becomes a vast cold expanse of dying stars and black holes.

The simulations, which took 11 days to run on Durham’s unique Cosmology Machine (COSMA) computer, looked at tiny ripples in the distribution of matter in the Universe made by sound waves a few hundred thousand years after the Big Bang. The ripples are delicate and some have been destroyed over the subsequent 13 billion years of the Universe, but the simulations showed they survived in certain conditions.

By changing the nature of dark energy in the simulations, the researchers discovered that the ripples appeared to change in length and could act as a “standard ruler” in the measurement of dark energy.

ICC Director Professor Carlos Frenk said: “The ripples are a ‘gold standard’. By comparing the size of the measured ripples to the gold standard we can work out how the Universe has expanded and from this figure out the properties of the dark energy.

“Astronomers are stuck with the one universe we live in. However, the simulations allow us to experiment with what might have happened if there had been more or less dark energy in the universe.”

In the next five to 10 years a number of experiments are planned to explore dark energy. The Durham simulation has demonstrated the feasibility of the SPACE satellite mission proposed to the European Space Agency’s (ESA) Cosmic Vision programme.

The project has been put forward by an international consortium of researchers including the Durham team.

SPACE, which is led by Bologna University, in Italy, is through to the next round of assessment by the ESA and if successful is planned to launch in 2017.

Co-principal investigator Professor Andrea Cimatti, of Bologna University, said: “Thanks to the ICC simulations it is possible to predict what SPACE would observe and to plan how to develop the mission parameters in order to obtain a three-dimensional map of the Universe and to compare it with the predictions of the simulations.

“Thanks to this comparison it will be possible to unveil the nature of dark energy and to understand how the structures in the Universe built up and evolved with cosmic time.”

The Durham research was funded by the Science and Technology Facilities Council (STFC) and the European Commission.

Robert Massey | alfa
Further information:
http://www.icc.dur.ac.uk/

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>