Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The leading ‘edge’: plastic fibre slashes network costs

10.01.2008
Plans in the 1990s to bring ultra-high speed telecom lines into every home foundered because the optical fibre infrastructure was just too expensive. But a new European project using plastic fibre and off-the-shelf components could make optical networking so cheap and simple that anyone could install it.

What happened to the dream of optical fibre in every home? While the core of the telecoms network, the long-distance trunk routes, use optical fibre, the links from the exchange to individual homes remain almost entirely copper wire. Telecoms companies have been creative in pushing copper to its limit with ADSL broadband technology and leveraging existing TV cable infrastructure (especially France and the Benelux), but only by taking optical fibre right into the home can they meet the demands for ever-faster connections.

The truth is, it’s too expensive. Ambitious plans to rip out the copper and lay optical fibre were largely abandoned in 2001 when telecoms companies realised that they could not afford the mounting costs. Only a few countries, notably Japan, have pushed ahead on any scale.

“The cost was way too high to be sustainable,” says Alessandro Nocivelli, the founder and CEO of Luceat SpA, one of the partners in the EU-funded POF-ALL project. “There was no business model to support such an investment.”

The object of POF-ALL is to find a technical solution to this rising cost. The partners decided to focus on the cabling inside buildings, which would typically account for 30% of the cost of laying an optical fibre from the exchange into the home. This last hundred metres or so is known as the ‘edge’ network.

“We realised that we could lower the cost of this edge installation by using a simpler technology,” says Nocivelli. “If we could employ a technology which is so simple to use that anyone can install it, that would relieve telecom companies of 30% of the cost of the access network, which means up to several billion euro if you consider the European Union as a whole.”

Safety concerns
The key to a simpler, cheaper edge network is optical fibre made of plastic rather than the more usual glass. It has several advantages. First of all, glass fibres use infrared laser light to transmit the signal. The light is invisible to the eye yet can cause permanent damage or even blindness if someone looks down a live fibre.

“I have a two-year-old child,” says Nocivelli, “and I would never install a glass optical fibre in my own home, even though I have been working with glass optical fibres for many years.” In contrast, plastic fibres use harmless green or red light that is easily visible to the eye. Plastic fibres can be safely installed in a home without risk to inquisitive children.

A second advantage is their robustness. Plastic fibres are much thicker than glass fibres, a millimetre or more, and can be handled without special tools or techniques. “You don’t need to be trained to handle and install it. You just cut it with scissors, plug it in and it works. It’s as easy as that.”

Of course there are drawbacks. Plastic fibres absorb light more than glass, which limits their useful length to a few hundred metres. They also have a lower data capacity than glass fibres. But that is fine for the cable that runs from a conventional glass fibre in the street into a house, or even for laying a network within a block of flats.

With six months of the project to run, POF-ALL is already producing results. The partners have built a system that uses green light to transmit 100 megabits a second over a distance of 300 metres, which is the speed telecom companies hope to offer their customers five to ten years from now, and 50 times as fast as a typical adsl broadband connection.

Future-proof for 30 years
The second achievement, using red light, is to transmit ten times faster still – one gigabit per second – over a 30m fibre. By the end of the project, in June 2008, they expect to have extended that to 100m.

“Then, of course, we will try to focus on longer distances,” says Nocivelli. “We have already demonstrated that plastic fibre would be future-proof not only for the next ten years but for the next 30 years. With that speed in your home you could download a full DVD in thirty seconds.”

Remarkably, the POF-ALL members have not had to develop any novel technologies. They have built their systems using the latest off-the-shelf components and the ingenuity and skill of the ten academic and industrial partners.

Two products are already coming to the market. Luceat is commercialising an optical Ethernet switch (a router) using plastic fibre technology and the Fraunhofer Institute is looking for partners to market an integrated optical transceiver to work at one gigabit a second with plastic fibre.

Home and office networks could be rewired with plastic optical fibre so simply and cheaply it could be a do-it-yourself job.“It’s future-proof,” confirms Nocivelli. You run at 100 Mbit/s today, 1 Gbit/s tomorrow and maybe 10 Gbit/s in the future.”

A follow-up project, POF-PLUS, is intended to further develop optoelectronic components for plastic fibre and is awaiting a final decision on EU funding.

The benefits for Europe of plastic optical fibre could be immense. Today, the market for optical network technology is dominated by US and Japanese firms, but Nocivelli sees an opportunity for European companies to seize the initiative in the same way as they did for mobile phones.

“The GSM standard, which was developed in Europe, has been adopted almost worldwide. And, of course, this is the kind of success we are looking forward to.”

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89422

More articles from Physics and Astronomy:

nachricht ALMA discovers aluminum around young star
17.05.2019 | National Institutes of Natural Sciences

nachricht JQI researchers shed new light on atomic 'wave function'
17.05.2019 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>