Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers are First to Successfully Predict Extra-Solar Planet

10.01.2008
Astronomers, including one at The University of Arizona, have successfully predicted the existence of an unknown planet, the first since Neptune was predicted in the 1840s. This planet, however, is outside our own solar system, circling a star a little more than 200 light years from Earth.
The UA's Rory Barnes and his associates predicted the unknown planet from their theoretical study of the orbits of two planets known to orbit star HD 74156. Barnes announced the discovery today at the American Astronomical Society meeting in Austin, Texas.

Barnes, who was an astronomy and physics undergraduate at UA, is now a post-doctoral associate at the UA's Lunar and Planetary Laboratory. He and his colleagues studied the orbits of several planetary systems and found that planets¹ orbits tend to be packed as closely together as possible without gravity destabilizing their orbits. They reasoned that this tight packing resulted from universal processes of planetary formation.

But the two planets, named ³B² and ³C², orbiting the star HD 74156 had a big gap between them. They concluded that if their ³Packed Planetary Systems² hypothesis was correct, then there must be another planet between planets B and C, and it must be in a particular orbit.

³When I realized that six out of seven multiplanet systems appeared Œpacked,¹² Barnes said, ³I naturally expected there must be another planet in the HD 74156 system so that it, too, would be packed.²

Jacob Bean and his colleagues from the University of Texas observed the planetary system carefully and confirmed that a new planet was located where Barnes had predicted. The new planet is named, by convention, HD 74156 D.

Those who collaborated with Barnes in making the successful prediction are Sean Raymond, now a post-doctoral associate at the University of Colorado, and professor Thomas Quinn of the University of Washington. The discovery team, from the University of Texas at Austin, includes Jacob Bean¹s adviser, professor Barbara McArthur, and professor Fritz Benedict.

Steven Soter, astronomer with the American Museum of Natural History in New York, has been following the discoveries of "extra-solar" planets, or planets orbiting other stars beyond our solar system. Soter noted that Barnes, Raymond and Quinn are the first to successfully predict the existence of an unknown planet since Neptune was predicted more than 160 years ago. Mid-19th century astronomers John Couch Adams in England and Urbain-Jean-Joseph Le Verrier in France independently calculated the position of Neptune based on irregularities in the motion of Uranus.

"As well as providing a way to predict planet discoveries, the Packed Planetary Systems hypothesis reveals something fundamental about the formation of planets," Barnes said. "The process by which planets grow from the clouds of dust and gas around young stars must be very efficient.
Wherever there is room for a planet to form, it does."

The Packed Planetary Systems hypothesis also predicts that gaps between known planets in other systems are probably occupied by other, still undiscovered planets. Barnes noted that shortly after the discovery of HD
74156 d, a different team of astronomers found a planet orbiting the star 55 Cancri, again in an orbit that Barnes and Raymond predicted.

Barnes and colleagues also have predicted a specific planet orbiting a third system, HD 38529. So far, no planet has been discovered there. However, the scientists say they expect future observations may confirm another successful prediction by the Packed Planetary Systems hypothesis.

CONTACT: Rory Barnes (520-626-3154; rory@lpl.arizona.edu)

Lori Stiles | UA Science news
Further information:
http://www.lpl.arizona.edu/~rory/prediction/

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>