Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snakes Hear in Stereo

10.01.2008
Paul Friedel, Bruce A. Young, and J. Leo van Hemmen Physical Review Letters (forthcoming)

Physicists from the University Munich in Germany and the University of Topeka, Kansas have strong new evidence that snakes can hear through their jaws. Snakes don't have outer ears, leading to the myth that they can't hear at all.

But they do have complete inner ear systems, including functional cochlea, which are carefully connected to and stimulated by their lower jaw. Resting on the ground, a snake's jaw can detect vibrations as small as an angstrom in amplitude (a motion roughly as large the diameter of a single atom), which act like sound waves to the inner ear.

The physicists performed a geometric study of the anatomy of horned desert vipers as well as the ground waves created by the footfalls of their prey. They showed mathematically that the jaw-to-cochlea system is sensitive to the frequencies of the prey's ground vibrations.

From their analysis, the physicists also found that the snake's notorious ability to unhinge their jaws and swallow their prey whole means that the right and left side of their jaws can receive vibrations independently, and the snakes hear in stereo.

The paper provides data supporting the theory that as the cochlea is stimulated, the snake’s auditory neurons create a topological map of its environment. Thus, as experiments have shown, some snakes can catch their prey using only vibration cues.

The physicists believe their study shows that ground vibrations to the lower jaw should be regarded as a significant source of sensory input for the snakes, and that this finding strongly supports the idea of the auditory stimulation creating a neural map. - CC

James Riordon | American Physical Society
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Immortal quantum particles: the cycle of decay and rebirth
14.06.2019 | Technische Universität München

nachricht Small currents for big gains in spintronics
13.06.2019 | University of Tokyo

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new paradigm of material identification based on graph theory

17.06.2019 | Materials Sciences

Electron beam strengthens recyclable nanocomposite

17.06.2019 | Materials Sciences

Tiny probe that senses deep in the lung set to shed light on disease

17.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>