Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble finds that “blue blobs” in space are orphaned clusters of stars

09.01.2008
Hubble has revealed that mysterious "blue blobs" in a structure called Arp’s Loop between M81 and M82 are blue clusters of stars less than 200 million years old with many stars as young as, and even younger than, 10 million years.

Finding blue blobs in space sounds like an encounter with an alien out of a science fiction movie. But the powerful NASA/ESA Hubble Space Telescope has resolved strange objects nicknamed "blobs" and found them to be brilliant blue clusters of stars born in the swirls and eddies of a galactic pile-up 200 million years ago.

The findings are reported by Duilia de Mello of the Catholic University of America, Washington, D.C. and NASA’s Goddard Space Flight Center, Greenbelt, Md. and her colleagues at the 211th meeting of the American Astronomical Society in Austin, Texas, USA.

Such “blue blobs”- each weighing tens of thousands of solar masses -have never been seen in detail before in such sparse locations, say researchers. They are more massive than most open clusters found inside galaxies, but a fraction of the mass of globular star clusters that orbit a galaxy.

Because the orphan stars don’t belong to any particular galaxy, the heavier elements produced in their fusion furnaces may easily be expelled back into intergalactic space. This may offer clues as to how the early universe was “polluted” with heavier elements early in its history, say researchers.

The mystery is that the “blue blobs” are found along a wispy bridge of gas strung among three colliding galaxies, M81, M82, and NGC 3077, residing approximately 12 million light-years from Earth. This is not the place astronomers expect to find star clusters: in the "abyssal plain" of intergalactic space. “We could not believe it, the stars were in the middle of nowhere”, says de Mello.

The “blue blobs” are clumped together in a structure called Arp’s Loop, along the tenuous gas bridge. The gas filaments were considered too thin to accumulate enough material to actually build this many stars, says de Mello. But Hubble reveals the “blue blobs” contain the equivalent of five Orion Nebulae.

After finding that these “blobs” resolved into stars, the team used the Hubble image to measure an age for the clusters of less than 200 million years old with many stars as young as, and even younger than, 10 million years. Not coincidentally, 200 million years is the estimated age of the galactic collision that created the tidal gas streamers, pulled between the galaxies like candy floss.

De Mello and her team propose that the star clusters in this diffuse structure might have formed from gas collisions and the subsequent turbulence, which enhanced the density of the gas streams locally. Galaxy collisions were much more frequent in the early Universe, so “blue blobs” should have been common. After the stars burned out or exploded, the heavier elements forged in their nuclear furnaces would have been ejected to enrich intergalactic space.

Radio observations with the Very Large Array of radio telescopes in Socorro, New Mexico, USA, gave a detailed map of the intergalactic bridge that revealed knots of denser gas. Studies with the 3.5m WIYN telescope on Kitt Peak in Arizona, USA, mapped the optical light glow of hydrogen along the bridge. Observations with NASA's Galaxy Evolution Explorer (GALEX) ultraviolet space telescope revealed an ultraviolet glow at the knots, and that earned them the nickname “blue blobs”. But GALEX did not have the resolution to see individual stars or clusters. Only Hubble’s Advanced Camera for Surveys at last revealed the point sources of the ultraviolet radiation.

Lars Christensen | alfa
Further information:
http://www.spacetelescope.org/news/html/heic0801.html

More articles from Physics and Astronomy:

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

nachricht Levitating objects with light
19.03.2019 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>