# Forum for Science, Industry and Business

Search our Site:

## Mathematicians Find Way To Improve Medical Scans

08.01.2008
Mathematicians at the University of Liverpool have found that it is possible to gain full control of sound waves which could lead to improved medical scans, for technology such as ultra sound machines.

Working in partnership with the Indian Institute of Technology in Kanpur, they tested the numerical properties of a flat lens made out of ‘meta-material’ - a material that gains its properties from its structure rather than its composition. This material is thought to defy the laws of physics, allowing objects to appear exactly as they are rather than upside down as seen in a normal convex or concave lens.

Dr Sebastien Guenneau, from Liverpool’s Department of Mathematical Sciences, explains: “We know that light can be controlled using ‘meta-material’ which can bend electromagnetic radiation around an area of space, making any object within it appear invisible. Now we have produced a mathematical model that proves this theory also works for sound.

“This theory becomes particularly interesting when considering ultrasound, which is a sound pressure used to penetrate an object to help produce an image of what the object looks like inside. This is most commonly used in pregnancy scans to produce an image of a foetus. We found that at a particular wave frequency the meta-material has a negative refraction effect, which means that the image produced in the flat lens appears at a high resolution in exactly the same way it appears in reality.

“What surprised us most of all, however, was at the point where negative refraction occurs the meta-material becomes invisible, suggesting that if we were to use this in sonogram technology, it could be possible to make the image appear in mid-air like a hologram rather than on a computer screen. We also found that if we arranged the meta-material in a checkerboard fashion, sound became trapped, making noisy machines, for example, quieter.”

The scientists predict that the technology could be adapted for tests at higher sound frequencies such as when drilling for oil, where a more accurate image of the earth could be made in order to pin point where drilling should take place.

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk

### More articles from Physics and Astronomy:

Immortal quantum particles: the cycle of decay and rebirth
14.06.2019 | Technische Universität München

Small currents for big gains in spintronics
13.06.2019 | University of Tokyo

### Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

### Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

### Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

### Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

### Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige