Fizeau interferometers for surfaces with different reflectivity

Fizeau interferometers generate an interference between the surface of a test sample and a reference surface that is brought close to the test sample. The interference image is recorded and analysed by an imaging optics system. The contrast and the shape of the interference signals depend, however, on the reflectivity of the test samples. The time and effort required for measuring and analysing the topographies of differently reflecting test pieces is therefore significantly increased.

The method of separating the wavefronts of the reference surface and the test sample surface in the plane of the reference surface – for which a patent has been applied for – uses a new generation of commercially available beam splitters, also called “on-axis beam splitters”, which cause a separation of the polarisation directions of the incident light along the optical axis. In comparison with common Fizeau interferometers, this has various advantages. On the one hand, through the generation of polarised light, the measurement can be traced back to a pure two-beam interference. The analysis of the signal is thus significantly facilitated and improved. Classic Fizeau interferometers, however, are based on the analysis of the multiple-beam interference.

On the other hand, by varying the direction of polarisation, a maximum contrast can be set, independent of the reflectivity of the test sample. In contrast to this, in conventional Fizeau interferometers, different reference surfaces with adapted reflectivity must be held available in case the reflectivity of the test samples varies strongly.

In order to increase the accuracy of analysis of common Fizeau interferometers, a variable phase is generated by varying mechanically the distance between the test sample and the reference surface (phase-shifter interferometry). Another advantage of the new method is that such a phase shifting becomes possible through the use of electro-optical components and thus without using mobile parts. Thanks to the increased measuring dynamics achieved in this way, it is, for example, possible to carry out topographical measurements in environments which are subjected to vibrational strain.

The new method allows a facilitated and improved analysis of the measurement data, requires only one calibrated reference surface instead of several, and opens up new possibilities of application in the field of dynamic interferometry. It is particularly suited for measurements on structured or unstructured surfaces with different reflectivities – especially in the optical and semiconductor industry.

Media Contact

Erika Schow alfa

More Information:

http://www.ptb.de

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors