Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Desktop Device Generates and Traps Rare Ultracold Molecules

17.12.2007
Physicists at the University of Rochester have combined an atom-chiller with a molecule trap, creating for the first time a device that can generate and trap huge numbers of elusive-yet-valuable ultracold polar molecules.

Scientists believe ultracold polar molecules will allow them to create exotic artificial crystals and stable quantum computers.

"The neat thing about this technology is that it's a very simple, but highly efficient method," says Jan Kleinert, a doctoral physics student at the University of Rochester and designer of the new device. "It lets us produce huge quantities of these ultracold polar molecules, which opens so many doors for us."

The Thin WIre electroStatic Trap, or TWIST, is the first electrostatic polar molecule trap that works simultaneously with a magneto-optical atom trap. This means Kleinert can use the lasers of the magneto-optical trap, or MOT, to chill atoms to just a few millionths of a degree above absolute zero, then force the atoms to group into molecules, and instantaneously hold them in place with the electrostatic TWIST trap.

Traditionally, a complex process of creating and trapping is required to produce these molecules, akin to repeatedly emptying and refilling the ice cube trays in your freezer, says Kleinert. A MOT with a TWIST, however, can create and store the chilled molecules in one place, instantly—more like a refrigerator with an automatic icemaker.

While polar molecules are literally as common as water, and dozens of laboratories around the world can cool atoms to such extreme temperatures, creating an ultracold polar molecule is difficult. Ultracold atoms can combine into molecules, but since only one type of atom can usually be cooled at once, the molecules it makes are electrically symmetric, not polar. Physicists have to either chill regular polar molecules, or chill several types of atoms at the same time and force them to join into molecules. Both processes are so complex that Kleinert says only four laboratories in the world do them, and the yield of ultracold polar molecules until now has been very low.

The TWIST, developed with Kleinert's advisor, Nicholas P. Bigelow, Lee A. DuBridge Professor of Physics at the University of Rochester, makes the complex process much more efficient, and thus makes available many more of these molecules.

The secret to the TWIST is the precise thickness of the tungsten wires that loop around the molecule-production area. In Kleinert's design, atoms are chilled with the lasers of a MOT, which drains away the atoms' energy, chilling them to nearly 460 degrees Fahrenheit below zero.

So far, this is exactly the same as the traditional method, but Kleinert surrounds his target area with tungsten loops that create an electric field. The field has no effect on the chilled atoms, but as the atoms are grouped into polar molecules by a process called photoassociation, the new polar molecules, with a positive charge on one side and a negative charge on the other, are affected by the field.

The electric field has a gradient, and due to some of the strange properties of the quantum world, polar molecules tend to "slide down" that gradient, collecting in the center of the field. As a result, says Kleinert, the TWIST collects and holds the low-field seeking polar molecules but lets other unaffected particles, such as atoms or other molecules, simply drift away.

Those tungsten loops have to be thick enough that they can withstand the electrostatic forces they generate, but thin enough that they don't block the MOT laser initiating the cooling. After months of trial and error and a lot of burned-out tungsten wire, Kleinert found that wires just the width of a hair provided the perfect balance.

"The coldest molecules so far have been produced from MOTs, but until the TWIST came along, electric field trapping and MOTs just didn't go together," says Kleinert. "Now we can accumulate these polar molecules continuously, without switching from creation to storage and back again."

With a good supply of ultracold polar molecules, computer scientists would have a new tool with which to tackle the creation of quantum computers, says Kleinert.

Quantum computer scientists are attracted to ultracold particles because their temperatures reduce decoherence, a phenomenon where your system decays from the carefully prepared quantum configuration you started with, to a classical physics state, which loses all the advantages quantum computers hold.

Ultracold polar molecules in particular are especially attractive because their strong polarity allows them to interact with each other over much larger distances than other atomic particles, and the stronger the interaction between particles, the faster a quantum computer can perform certain operations.

Ultracold polar molecules may even allow scientists to venture into an unknown quarter of the Standard Model of Physics—the size of the electron, says Kleinert. The answer to whether the electron has a definite size or is just a dimensionless point in space could support the Standard Model, or support one of the many alternate models. Trying to approximate the electron's size would likely require ultracold polar molecules, which can have 100 times the sensitivity of simple ultracold atoms. That difference could be enough to make a definitive measurement supporting or chipping away at the Standard Model altogether.

About the University of Rochester
The University of Rochester (www.rochester.edu) is one of the nation's leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College of Arts, Sciences, and Engineering is complemented by the Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, Schools of Medicine and Nursing, and the Memorial Art Gallery.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>