Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Telescope to observe Ringing Star

17.05.2002


Over the coming weeks an international team, led by Professor Ulrich Heber of the University of Erlangen-Nuernberg, Germany, will use over fifteen different telescopes around the world to make over one hundred nights of observations of just one star to learn about its internal structure.



The constellation of the "Serpent" contains a variable star, called V338 Ser, which vibrates with several periods of about ten minutes. It is a very old and nearly burnt out star which has lost most of its outer layers. Astronomers want to know just how old this star is and what happened to its outer layers.

This is difficult because it is normally impossible to see inside a star. Fortunately the surfaces of a few stars, including the Sun, vibrate upwards and downwards. These vibrations can be analyzed by borrowing techniques from seismology, which uses earthquakes or man-made explosions to send signals through the earth`s crust to measure its density. Astronomers can measure the density inside some stars by measuring the speed of naturally occurring vibrations. Each vibration probes a different layer of the star.


The Multi-Site Spectroscopic Telescope represents an international project led by Professor Ulrich Heber of the University of Erlangen-Nuernberg, Germany. Drs Simon Jeffery of the Armagh, Northern Ireland, Simon O`Toole of the University of Sydney, Australia, and Stephan Dreizler of the University of Tuebingen, Germany lead three teams, each making a different type of observation. The project will use over fifteen different telescopes ranging from 1 metre to 4 metres in diameter and located in over seven nations around the world, including Australia, China, South Africa, Italy, Spain, Chile and the USA. Over 26 astronomers will measure how much light the star emits and how fast the surface of the star is moving inwards and outwards.

The project is also being supported by The Whole Earth Telescope, another international project which uses light variations alone to make seismological studies of rapidly varying stars.

One reason for such a large campaign is that it takes a lot of telescope time to measure and resolve the very weak signals coming from the star. Daytime interruptions can make these signals impossible to untangle. Using several telescopes around the world should ensure that the star never sets. Altough the approach has been used before, this may be the first time that a global asteroseismology project has tried to measure both light and spectrum variations at the same time for any star apart from the Sun.

Simon Jeffery said "This project represents the best oppurtunity yet to identify pulsation modes and do real asteroseimology of a star of this class. It will also lead to the development of a range of new techniques for studying the interiors of many other stars."

The first telescopes started taking data on Tuesday 14th May, and observations will continue until 24th June.

John McFarland | alphagalileo

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>