Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light and sound – the way forward for better medical imaging

13.12.2007
Detection and treatment of tumours, diseased blood vessels and other soft-tissue conditions could be significantly improved, thanks to an innovative imaging system being developed that uses both light and sound.

The system uses extremely short pulses of low-energy laser light to stimulate the emission of ultrasonic acoustic waves from the tissue area being examined. These waves are then converted into high-resolution 3D images of tissue structure.

This method can be used to reveal disease in types of tissue that are more difficult to image using techniques based on x-rays or conventional ultrasound. For example, the new system is better at imaging small blood vessels, which may not be picked up at all using ultrasound. This is important in the detection of tumours, which are characterised by an increased density of blood vessels growing into the tissue.

The technique, which is completely safe, will help doctors diagnose, monitor and treat a wide range of soft-tissue conditions more effectively.

The first of its kind in the world, the prototype system has been developed by medical physics and bioengineering experts at University College London, with funding from the Engineering and Physical Sciences Research Council (EPSRC). It is soon to undergo trials in clinical applications, with routine deployment in the healthcare sector envisaged within around 5 years.

The emission of an acoustic wave when matter absorbs light is known as the photoacoustic effect. Harnessing this basic principle, the new system makes use of the variations in the sound waves that are produced by different types of soft human tissue to identify and map features that other imaging methods cannot distinguish so well.

By appropriate selection of the wavelength of the laser pulses, the light can be controlled to penetrate up to depths of several centimetres. The technique therefore has important potential for the better imaging of conditions that go deep into human tissue, such as breast tumours, and for contributing to the diagnosis and treatment of vascular disease.

The prototype instrument, however, has been specifically designed to image very small blood vessels (with diameters measured in tens or hundreds of microns) that are relatively close to the surface. Information generated about the distribution and density of these microvessels can in turn provide valuable data about skin tumours, vascular lesions, burns, other soft tissue damage, and even how well an area of tissue has responded to plastic surgery following an operation.

The development process has included theoretical and experimental investigations of photoacoustic interactions with soft tissue, development of appropriate computer image-reconstruction algorithms, and construction of a prototype imaging instrument incorporating the new technique.

“This new system offers the prospect of safe, non-invasive medical imaging of unprecedented quality,” says Dr Paul Beard who leads UCL’s Photoacoustic Imaging Group. “It also has the potential to be an extremely versatile, relatively inexpensive and even portable imaging option.”

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Physics and Astronomy:

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

nachricht Theorists publish highest-precision prediction of muon magnetic anomaly
16.07.2018 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>