Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light and sound – the way forward for better medical imaging

13.12.2007
Detection and treatment of tumours, diseased blood vessels and other soft-tissue conditions could be significantly improved, thanks to an innovative imaging system being developed that uses both light and sound.

The system uses extremely short pulses of low-energy laser light to stimulate the emission of ultrasonic acoustic waves from the tissue area being examined. These waves are then converted into high-resolution 3D images of tissue structure.

This method can be used to reveal disease in types of tissue that are more difficult to image using techniques based on x-rays or conventional ultrasound. For example, the new system is better at imaging small blood vessels, which may not be picked up at all using ultrasound. This is important in the detection of tumours, which are characterised by an increased density of blood vessels growing into the tissue.

The technique, which is completely safe, will help doctors diagnose, monitor and treat a wide range of soft-tissue conditions more effectively.

The first of its kind in the world, the prototype system has been developed by medical physics and bioengineering experts at University College London, with funding from the Engineering and Physical Sciences Research Council (EPSRC). It is soon to undergo trials in clinical applications, with routine deployment in the healthcare sector envisaged within around 5 years.

The emission of an acoustic wave when matter absorbs light is known as the photoacoustic effect. Harnessing this basic principle, the new system makes use of the variations in the sound waves that are produced by different types of soft human tissue to identify and map features that other imaging methods cannot distinguish so well.

By appropriate selection of the wavelength of the laser pulses, the light can be controlled to penetrate up to depths of several centimetres. The technique therefore has important potential for the better imaging of conditions that go deep into human tissue, such as breast tumours, and for contributing to the diagnosis and treatment of vascular disease.

The prototype instrument, however, has been specifically designed to image very small blood vessels (with diameters measured in tens or hundreds of microns) that are relatively close to the surface. Information generated about the distribution and density of these microvessels can in turn provide valuable data about skin tumours, vascular lesions, burns, other soft tissue damage, and even how well an area of tissue has responded to plastic surgery following an operation.

The development process has included theoretical and experimental investigations of photoacoustic interactions with soft tissue, development of appropriate computer image-reconstruction algorithms, and construction of a prototype imaging instrument incorporating the new technique.

“This new system offers the prospect of safe, non-invasive medical imaging of unprecedented quality,” says Dr Paul Beard who leads UCL’s Photoacoustic Imaging Group. “It also has the potential to be an extremely versatile, relatively inexpensive and even portable imaging option.”

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>