Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMEC increases performance of high-k metal gate planar CMOS and FinFETs

13.12.2007
At today’s IEEE International Electron Devices Meeting, IMEC reports significant progress in improving the performance of planar CMOS using hafnium-based high-k dielectrics and tantalum-carbide metal gates targeting the 32nm CMOS node.

Low threshold voltage (Vt) is achieved by applying a thin dielectric cap between the gate dielectric and metal gate. In addition, the use of laser-only annealing for gate stack engineering resulted in a significant reduction of the minimum sustainable gate length and improved short-channel effect control. The same processes were applied on FinFETs and resulted in a possible candidate technology for the 22nm node.

A major challenge in using high-k dielectrics for CMOS devices is the high threshold voltage resulting in low performance. Dual metal gates in combination with dual dielectrics can solve this problem but have the drawback that extra processing steps are required resulting in a higher processing cost. IMEC developed a simpler, lower-cost integration scheme using only one dielectric stack and one metal. A thin dielectric cap is deposited between the gate dielectric and metal gate which effectively modulates the work function towards the optimal operating zone. Laser anneal instead of spike anneal is applied to reduce the effective oxide thickness. Using laser-only annealing higher activated and shallow junctions could be achieved.

Both a lanthanium- (La2O3) and dysprosium-based (Dy2O3) capping layer was used for nMOS and an aluminum-based capping layer for pMOS. Symmetric low Vt of +/-0.25V were achieved and drive currents of 1035µA/µm and 505µA/µm for nMOS and pMOS respectively at VDD of 1.1V and Ioff of 100nA/µm. Successful CMOS integration was illustrated by a ring oscillator delay of less than 15ps.

Since thin gate dielectrics suffer from soft breakdown before the specified lifetime and the failure is difficult to forecast, IMEC developed a time-dependent dielectric breakdown model to completely predict the reliability of the devices. The model is based on the statistical analysis of hard breakdown including multiple soft breakdown and wear out. By applying the model on the high-k/metal gate devices, the excellent quality of the gate dielectrics has been demonstrated.

In strong collaboration with NXP and TSMC, excellent performance (drive current of 950µA/µm and Ioff of 50nA/µm at VDD of 1V for nMOS FinFETs) and short channel effect control were achieved for tall, narrow FinFETs without mobility enhancement. Physical vapor deposition (PVD) and atomic layer deposition (ALD) were compared as metal deposition technique. Since PVD metals are denser and less porous, PVD of titanium nitride (TiN) electrodes on hafnium oxide (HfO2) dielectrics gave improved nMOS performance compared to ALD TiN. IMEC also applied the dysprosium-based (Dy2O3) capping process on FinFETs resulting in a possible candidate technology for the 22nm node.

These results were obtained in collaboration with IMEC’s (sub-)32nm CMOS core partners including Infineon, Qimonda, Intel, Micron, NXP, Panasonic, Samsung, STMicroelectronics, Texas Instruments and TSMC, and IMEC’s key CMOS partners including Elpida and Hynix.

Katrien Marent | alfa
Further information:
http://www.imec.be/wwwinter/mediacenter/en/IEEE2007.shtml

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>