Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Relativistic tunnelling

17.04.2013
The time a particle takes to tunnel through a barrier in quantum mechanics is obviously longer than many physicists assumed so far. Scientists at the Max Planck Institute for Nuclear Physics in Heidelberg showed evidence that tunnelling takes a very brief but finite and measureable time.

This is the result of their theoretical study on an electron that tunnels out of an atom in an intense laser field while being accelerated up near to the speed of light.


Fig. 1: Schematic description of tunnel ionization of highly charged ions at relativistic laser intensities. The superposition of the Coulomb potential of the atomic core and the electric field of the laser forms a potential barrier (in blue) that the electronic wave packet (in green) may tunnel through into the direction of the laser's electric component. Unlike in nonrelativistic tunnelling the ionization potential (in red) becomes position-dependent as a consequence of the laser's magnetic field. Furthermore, while tunnelling the wave packet gets shifted under the influence of ‘light pressure’ into the propagation direction fields (solid green line, see text for details).

A ball running uphill will not roll over the hill if it is not given enough velocity. On atomic scales that are ruled by the laws of quantum physics, however, a particle has a non-zero chance to get onto the opposite side of a barrier even though it is not allowed to get over according to classical physics. Physicists call this effect tunnelling because it seems as if the particle forms a tunnel to pass through the barrier.

A quantum tunnelling barrier may be build up in an atom or a hydrogen-like ion by the attractive Coulomb forces that attach the electron to the atomic core and the electric field of a strong laser that pulls the electron away from the core. Metaphorically speaking the ion's Coulomb potential and the laser's electric field form a hill (a so-called potential barrier) the electron may tunnel through to ionize. For highly charged hydrogen-like ions, i.e., an atomic core with a single electron, however, ultra-strong lasers with intensities of the order of 10^18 W/cm^2 and above are required to achieve measureable ionization probabilities. Such ultra-strong lasers can no longer be treated as pure electric fields, the laser's magnetic field component has to be taken into account, too. Magnetic fields, however, do not fit into the conventional picture of a tunnelling barrier.

Therefore, it has been argued that the whole tunnelling concept may break down in the presence of magnetic fields. In Physical Review Letters, Klaiber and colleagues at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany, have shown now that the notion of a tunnelling barrier can also be applied in the presence of magnetic fields of ultra-strong lasers via reshaping the potential barrier. A question that has caused many controversial discussions among physicists and remains unsolved till today is how long an electron needs to tunnel through a barrier.

Direct measurements of tunnelling times are hampered by experimental as well as conceptual difficulties. While extending the tunnelling picture into the regime of ultra-strong lasers, Klaiber and colleagues demonstrated that tunnel ionization of hydrogen-like ions via ultra-strong lasers features two time scales which may be measured indirectly. In particular, a small shift of the point of exit where the electron leaves the tunnelling barrier is caused by the presence of a magnetic field. This shift is proportional to the so-called Eisenbud-Wigner-Smith tunnelling time.

Furthermore, the magnetic field changes the velocity distribution of the ionized electrons. Ionized electrons escape with a non-zero velocity along the propagation direction of the laser that is proportional to the so-called Keldysh tunnelling time. Thus, Max-Planck-physicists related these two tunnelling times to quantities that are accessible to direct measurements in laboratory experiments. For tunnel ionization of hydrogen-like ions with small atomic numbers lasers of moderate intensities and, therefore, weak magnetic components are sufficient and the consequences of the two tunnelling time scales become small.

This may explain why experimentalists have not been able so far to measure non-zero tunnelling times in tunnelling through high barriers. By increasing the laser's intensity the height of the tunnelling barrier decreases and the shape of the barrier changes qualitatively. First calculations have given hints that in this regime the tunnelling times become relevant again and may be determined experimentally.

Original publication:
Under-the-barrier dynamics in laser-induced relativistic tunneling
Michael Klaiber et al., Phys. Rev. Lett. 110, 153004 (2013)
doi:10.1103/PhysRevLett.110.153004

Contact:

Hon.-Prof. Dr. Christoph H. Keitel
Phone: (+49)6221 516-150
E-Mail: christoph.keitel@mpi-hd.mpg.de

Dr. habil. Karen Z. Hatsagortsyan
Phone: (+49)6221 516-160
E-Mail: Karen.Hatsagortsyan@mpi-hd.mpg.de
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.110.153004
Original publication
http://www.mpi-hd.mpg.de/keitel/
Division Keitel at MPIK

Dr. Bernold Feuerstein | Max-Planck-Institut
Further information:
http://www.mpi-hd.mpg.de

More articles from Physics and Astronomy:

nachricht New type of low-energy nanolaser that shines in all directions
18.12.2018 | Eindhoven University of Technology

nachricht NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate
18.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>