Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regensburg physicists watch electron transfer in a single molecule

14.02.2019

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks directly, but rather by their mutual interactions, which are governed by their outer electron shells. Many chemical processes are based on the exchange of electrons between atoms and molecules, a mechanism known as electron transfer.


Change in the electron cloud of a single molecule upon charging.

© Laerte Patera & Jascha Repp – only to be used for this press release.

Atoms and molecules are so unimaginably small that a direct imaging of these basic building blocks and their interaction seemed, for a long time, impossible. Several decades ago, imaging individual atoms became possible thanks to the invention of sophisticated types of microscopies that are not based on optics.

Instead, the objects are sensed with an atomically sharp tip that can image matter down to the ångström scale, where 10 million ångström equal 1 millimeter in space. Among these microscopies, the so called scanning tunneling microscopy images the electron shell of matter by current measurement.

With this type of microscopy, it is possible to probe the electron clouds surrounding atoms and molecules, known as electron orbitals. Another variant of these microscopies, the atomic force microscopy is instead, by sensing tiny forces, able to resolve individual bonds between neighboring atoms. Since roughly one decade, stunning images of a single molecule’s chemical structure may be acquired with this technique.

While electron orbitals are decisive for virtually all chemical reactions, in reverse, chemical reactions also lead to dramatic changes of the shape of orbitals. However, this back-action to the electron shell, when atoms and molecules exchange charges with their neighbors, could not be imaged so far.

As scanning tunneling microscopy is based upon the measurement of currents, it requires a conductive support; yet this support allows only one single stable charge state for a molecule. In fact, any additional charge tends to escape into the underlying support, hindering the microscopic observation of the effect of electron transfer on the molecular orbitals.

Therefore, molecules need to be examined on an electrically insulating support, should one wish to study different charge states. This is, in principle, possible through atomic force microscopy, but this type of microscopy cannot be used to measure the outer electron shell.

At the University of Regensburg, the above back-action of the electron transfer onto the electron orbitals has now, for the first time, been captured by images. The international team of scientists accomplished this breakthrough by combining principles of the two aforementioned scanning tunneling and atomic force microscopy, thereby developing a novel variant.

Instead of the usual direct current in conventional scanning tunneling microscopy, in their experiments they drive a tiny alternating current between the atomically sharp conductive sensor and the molecule under study. The alternating current consists of just a single electron that is driven to jump back and forth between the sensor’s tip and the molecule.

This way, no net current flows inside the microscope, which therefore does not require a conductive support of the molecule. This in turn allows one to bring the molecule in any desired charge state, that is, it allows forcing the molecule to give away or take up additional electrons as it would in a chemical reaction, while studying its orbitals more closely.

With this novel method, the researchers could, for the first time, record images of the changes of the electron shell that occur upon the charging of molecules, directly resolved in space at the single-molecule level. These novel microscopic insights into the atomistic details of electron transfer on the single-orbital scale will shed new light on our understanding of processes at the heart of vital chemical reactions such as photosynthesis, combustion and corrosion.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Jascha Repp
Professur für Experimentelle und Angewandte Physik
Universität Regensburg
Tel.: 0941 943-4201
E-Mail: jascha.repp@ur.de

Originalpublikation:

Laerte L. Patera, Fabian Queck, Philipp Scheuerer and Jascha Repp, “Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators”, Nature (2019).
DOI: 10.1038/s41586-019-0910-3

Christina Glaser | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

More articles from Physics and Astronomy:

nachricht Bridging the nanoscale gap: A deep look inside atomic switches
22.07.2019 | Tokyo Institute of Technology

nachricht Heat flow through single molecules detected
19.07.2019 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Bridging the nanoscale gap: A deep look inside atomic switches

22.07.2019 | Physics and Astronomy

Regulation of root growth from afar: How genes from leaf cells affect root growth

22.07.2019 | Life Sciences

USF geoscientists discover mechanisms controlling Greenland ice sheet collapse

22.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>