Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regensburg physicists watch electron transfer in a single molecule

14.02.2019

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks directly, but rather by their mutual interactions, which are governed by their outer electron shells. Many chemical processes are based on the exchange of electrons between atoms and molecules, a mechanism known as electron transfer.


Change in the electron cloud of a single molecule upon charging.

© Laerte Patera & Jascha Repp – only to be used for this press release.

Atoms and molecules are so unimaginably small that a direct imaging of these basic building blocks and their interaction seemed, for a long time, impossible. Several decades ago, imaging individual atoms became possible thanks to the invention of sophisticated types of microscopies that are not based on optics.

Instead, the objects are sensed with an atomically sharp tip that can image matter down to the ångström scale, where 10 million ångström equal 1 millimeter in space. Among these microscopies, the so called scanning tunneling microscopy images the electron shell of matter by current measurement.

With this type of microscopy, it is possible to probe the electron clouds surrounding atoms and molecules, known as electron orbitals. Another variant of these microscopies, the atomic force microscopy is instead, by sensing tiny forces, able to resolve individual bonds between neighboring atoms. Since roughly one decade, stunning images of a single molecule’s chemical structure may be acquired with this technique.

While electron orbitals are decisive for virtually all chemical reactions, in reverse, chemical reactions also lead to dramatic changes of the shape of orbitals. However, this back-action to the electron shell, when atoms and molecules exchange charges with their neighbors, could not be imaged so far.

As scanning tunneling microscopy is based upon the measurement of currents, it requires a conductive support; yet this support allows only one single stable charge state for a molecule. In fact, any additional charge tends to escape into the underlying support, hindering the microscopic observation of the effect of electron transfer on the molecular orbitals.

Therefore, molecules need to be examined on an electrically insulating support, should one wish to study different charge states. This is, in principle, possible through atomic force microscopy, but this type of microscopy cannot be used to measure the outer electron shell.

At the University of Regensburg, the above back-action of the electron transfer onto the electron orbitals has now, for the first time, been captured by images. The international team of scientists accomplished this breakthrough by combining principles of the two aforementioned scanning tunneling and atomic force microscopy, thereby developing a novel variant.

Instead of the usual direct current in conventional scanning tunneling microscopy, in their experiments they drive a tiny alternating current between the atomically sharp conductive sensor and the molecule under study. The alternating current consists of just a single electron that is driven to jump back and forth between the sensor’s tip and the molecule.

This way, no net current flows inside the microscope, which therefore does not require a conductive support of the molecule. This in turn allows one to bring the molecule in any desired charge state, that is, it allows forcing the molecule to give away or take up additional electrons as it would in a chemical reaction, while studying its orbitals more closely.

With this novel method, the researchers could, for the first time, record images of the changes of the electron shell that occur upon the charging of molecules, directly resolved in space at the single-molecule level. These novel microscopic insights into the atomistic details of electron transfer on the single-orbital scale will shed new light on our understanding of processes at the heart of vital chemical reactions such as photosynthesis, combustion and corrosion.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Jascha Repp
Professur für Experimentelle und Angewandte Physik
Universität Regensburg
Tel.: 0941 943-4201
E-Mail: jascha.repp@ur.de

Originalpublikation:

Laerte L. Patera, Fabian Queck, Philipp Scheuerer and Jascha Repp, “Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators”, Nature (2019).
DOI: 10.1038/s41586-019-0910-3

Christina Glaser | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

More articles from Physics and Astronomy:

nachricht Cherned up to the maximum
10.07.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Porous graphene ribbons doped with nitrogen for electronics and quantum computing
09.07.2020 | University of Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>