Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recycling galaxies caught in the act

14.03.2012
When astronomers add up all the gas and dust contained in ordinary galaxies (like our own Milky Way), they find a discrepancy: there is not nearly enough matter for stars to form at the observed rates for long.

As a (partial) solution, a matter cycle on gigantic scales has been proposed. In our local galactic neighbourhood, traces of this mechanism had already been found. Now, a study led by Kate Rubin of the Max Planck Institute for Astronomy has found the first direct evidence of such gas flowing back into distant galaxies that are actively forming new stars, validating a key part of "galactic recycling".


Images of the six galaxies with detected inflows taken with the Advanced Camera for Surveys on the Hubble Space Telescope. Most of these galaxies have a disk-like, spiral structure, similar to that of the Milky Way. Star formation activity occurring in small knots is evident in several of the galaxies' spiral arms. Because the spirals appear tilted in the images, Rubin et al. concluded that we are viewing them from the side, rather than face-on. This orientation meshes well with a scenario of 'galactic recycling' in which gas is blown out of a galaxy perpendicular to its disk, and then falls back in at different locations along the edge of the disk.
Image credit: K. Rubin, MPIA

Star formation regions, such as the Orion nebula, represent some of the most beautiful astronomical sights. It is estimated that in our home galaxy, the Milky Way, on average one solar mass's worth of matter per year is turned into stars. Yet a survey of the available raw material, clouds of gas and dust, shows that, using only its own resources, our galaxy could not keep up this rate of star formation for longer than a couple of billion years. Is our home galaxy currently undergoing a rather special, comparatively short-lived era of star formation? Both stellar age determinations and comparison with other spiral galaxies show that not to be the case. One solar mass per year is a typical star formation rate, and the problem of insufficient raw matter appears to be universal as well.

Evidently, additional matter finds its way into galaxies. One possibility is an inflow from huge low-density gas reservoirs filling the intergalactic voids; there is, however, very little evidence that this is happening. Another possibility, closer to home, involves a gigantic cosmic matter cycle. Gas is observed to flow away from many galaxies, and may be pushed by several different mechanisms, including violent supernova explosions (which are how massive stars end their lives), and the sheer pressure exerted by light emitted by bright stars on gas in their cosmic neighbourhood.

As this gas drifts away, it is pulled back by the galaxy's gravity, and could re-enter the same galaxy in time scales of one to several billion years. This process might solve the mystery: the gas we find inside galaxies may only be about half of the raw material that ends up as fuel for star formation. Large amounts of gas are caught in transit, but will re-enter the galaxy in due time. Add up the galaxy's gas and the gas currently undergoing cosmic recycling, and there is a sufficient amount of raw matter to account for the observed rates of star formation.

There was, however, uncertainty about the viability of this proposal for cosmic recycling. Would such gas indeed fall back, or would it more likely reach the galaxy's escape velocity, flying ever further out into space, never to return? For local galaxies out to a few hundred million light-years in distance, there had indeed been studies showing evidence for inflows of previously-expelled gas. But what about more distant galaxies, where outflows are known to be much more powerful – would gravity still be sufficient to pull the gas back? If no, astronomers might have been forced to radically rethink their models for how star formation is fueled on galactic scales.

Now, a team of astronomers led by Kate Rubin (MPIA) has used the Keck I telescope on Mauna Kea, Hawai'i, to examine gas associated with a hundred galaxies at distances between 5 and 8 billion light-years (z ~ 0.5 – 1), finding, in six of those galaxies, the first direct evidence that gas adrift in intergalactic space does indeed flow back into star-forming galaxies. As the observed rate of inflow might well depend on a galaxy's orientation relative to the observer, and as Rubin and her team can only measure average gas motion, the real proportion of galaxies with this kind of inflow is likely to be higher than the 6% directly suggested by their data, and could be as high as 40%. This is a key piece of the puzzle and important evidence that cosmic recycling ("galactic fountains") could indeed solve the mystery of the missing raw matter.

Contact

Dr. Kate Rubin (lead author)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 370
Email: rubin@mpia.de
Dr. Markus Pössel (Public relations)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 261
Email: pr@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de

Further reports about: Milky Way Recycling distant galaxies massive star raw material star formation

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>