Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record massive black holes discovered lurking in monster galaxies

06.12.2011
University of California, Berkeley, astronomers have discovered the largest black holes to date ‑- two monsters with masses equivalent to 10 billion suns that are threatening to consume anything, even light, within a region five times the size of our solar system.

These black holes are at the centers of two galaxies more than 300 million light years from Earth, and may be the dark remnants of some of the very bright galaxies, called quasars, that populated the early universe.

“In the early universe, there were lots of quasars or active galactic nuclei, and some were expected to be powered by black holes as big as 10 billion solar masses or more,” said Chung-Pei Ma, UC Berkeley professor of astronomy. “These two new supermassive black holes are similar in mass to young quasars, and may be the missing link between quasars and the supermassive black holes we see today.”

Black holes are dense concentrations of matter that produce such strong gravitational fields that even light cannot escape. While exploding stars, called supernovas, can leave behind black holes the mass of a single star like the sun, supermassive black holes have presumably grown from the merger of other black holes or by capturing huge numbers of stars and massive amounts of gas.

“These black holes may shed light on how black holes and their surrounding galaxies have nurtured each other since the early universe,” said UC Berkeley graduate student Nicholas McConnell, first author of a paper on the discovery being published in the Dec. 8 issue of the British journal Nature by McConnell, Ma and their colleagues at the university of Toronto, Texas and Michigan, as well as by the National Optical Astronomy Observatory in Arizona.

To date, approximately 63 supermassive black holes have been found sitting in the cores of nearby galaxies. The largest for more than three decades was a 6.3 billion solar mass black hole in the center of the nearby galaxy M87.

One of the newly discovered black holes is 9.7 billion solar masses and located in the elliptical galaxy NGC 3842, the brightest galaxy in the Leo cluster of galaxies, 320 million light years away in the direction of the constellation Leo. The second is as large or larger and sits in the elliptical galaxy NGC 4889, the brightest galaxy in the Coma cluster about 336 million light years from Earth in the direction of the constellation Coma Berenices.

According to McConnell, these black holes have an event horizon – the “abandon all hope” edge from which not even light can escape – that is 200 times the orbit of Earth, or five times the orbit of Pluto. Beyond the event horizon, each black hole has a gravitational influence that would extend over a sphere 4,000 light years across.

“For comparison, these black holes are 2,500 times as massive as the black hole at the center of the Milky Way Galaxy, whose event horizon is one fifth the orbit of Mercury,” McConnell said.

The brightest galaxy in a cluster

These 10 billion solar mass black holes have remained hidden until now, presumably because they are living in quiet retirement, Ma said. During their active quasar days some 10 billion years ago, they cleared out the neighborhood by swallowing vast quantities of gas and dust. The surviving gas became stars that have since orbited peacefully. According to Ma, these monster black holes, and their equally monster galaxies that likely contain a trillion stars, settled into obscurity at the center of galaxy clusters.

Ma, a theoretical astrophysicist, decided to look for these huge black holes in relatively nearby clusters of elliptical galaxies as a result of her computer simulations of galaxy mergers.

Astronomers believe that many, if not all, galaxies have a massive black hole at the center, with the larger galaxies harboring larger black holes. The largest black holes are found in elliptical galaxies, which are thought to result from the merger of two spiral galaxies. Ma found, however, that mergers of elliptical galaxies themselves could produce the largest elliptical galaxies as well as supermassive black holes approaching 10 billion solar masses. These black holes can grow even larger by consuming gas left over from a merger.

“Multiple mergers are one way to build up these behemoths,” Ma said.

To look for these monster black holes, Ma teamed up with observational astronomers, including James Graham, a professor of astronomy at UC Berkeley and the University of Toronto, and Karl Gebhardt, a professor of astronomy at the University of Texas at Austin. Gebhardt had obtained the mass of the previous record holder in galaxy M87.

Using telescopes at the Gemini and Keck observatories in Hawaii and at McDonald Observatory in Texas, McConnell and Ma obtained detailed spectra of the diffuse starlight at the centers of several massive elliptical galaxies, each the brightest galaxy in its cluster. So far, they’ve analyzed the orbital velocities of stars in two galaxies and calculated the central masses to be in the quasar range. Having such huge masses contained within a volume only a few hundred light years across led the astronomers to conclude that the masses were massive black holes.

“If all that mass were in stars, then we would see their light”, Ma said.

Modeling these massive galaxies required use of state-of-the-art supercomputers at the Texas Advanced Computing Center.

“For an astronomer, finding these insatiable black holes is like finally encountering people nine feet tall, whose great height had only been inferred from fossilized bones. How did they grow so large?” Ma said. “This rare find will help us understand whether these black holes had very tall parents or ate a lot of spinach.”

Other coauthors of the Nature paper are Hubble postdoctoral fellow Shelley A. Wright at UC Berkeley and graduate student Jeremy D. Murphy of the University of Texas; Tod R. Lauer of the National Optical Astronomy Observatory; and Douglas O. Richstone of the University of Michigan.

The research was supported by the National Science Foundation, the National Aeronautics and Space Administration and UC Berkeley’s Miller Institute for Basic Research in Science.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu
http://newscenter.berkeley.edu/2011/12/05/record-black-holes-bigger-than-our-solar-system/

More articles from Physics and Astronomy:

nachricht Broadband transmission-type coding metasurface for electromagnetic beam forming and scanning
17.02.2020 | Science China Press

nachricht How do rotor blades deform in wind gusts?
17.02.2020 | Jade Hochschule - Wilhelmshaven/Oldenburg/Elsfleth

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease

17.02.2020 | Life Sciences

Artificial intelligence is becoming sustainable!

17.02.2020 | Information Technology

Catalyst deposition on fragile chips

17.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>