Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record Cosmic Explosion Brightens Student's First Day

20.02.2009
Adam Goldstein’s first day on the job tending the Gamma-ray Burst Monitor (GBM) instrument on NASA’s Fermi Gamma-ray Space Telescope was a doozy.

A graduate physics student at The University of Alabama in Huntsville, Goldstein was still learning the ropes the evening of Sept. 16, 2008, nearing the end of his 12-hour on-call shift when the GBM called his cell phone to signal that a burst had been detected.

That in itself wasn’t remarkable: GBM detects about one burst a day and it keeps Goldstein’s cell phone number handy, along with those of the other GBM team members.

This burst, however, lasted 23 minutes — almost 700 times as long as the two-second average for high-energy gamma-ray bursts. And that was just for starters.

“I was in class the next morning when Alexander (van der Horst, a NASA post-doctoral fellow) called me up and told me the LAT (Fermi’s Large Area Telescope) had found photons from that same burst,” Goldstein recalls. “At the time, when you get a burst you oooh and aaah but it’s not until you can sit down and do the spectral analysis that you know what you’ve found. And if another instrument looked at it, then you’ve got the chance to do some real science.”

The first significant gamma-ray burst detected by the LAT (Fermi was lifted into orbit in June), this burst bursts with superlatives. When the analysis of spectral data collected by a telescope on the ground was finished in November, the burst’s “red shift” put its point of origin about 12 billion light years from Earth. (Seen from Earth it came from just below the star Chi Carina in the southern sky.)

When that distance is factored with the burst’s brightness at the Fermi sensors, it becomes the most powerful gamma-ray event ever detected — four times as powerful at the source as the second strongest burst ever detected, said Dr. Valerie Connaughton, a scientist in UAHuntsville’s Center for Space Plasma and Aeronomic Research (CSPAR) and a member of the GBM team.

“This is the most spectacular burst ever seen at high energy,” she said. “If the event that caused this blew out in every direction instead of being a focused beam, it would be equivalent to 4.9 times the mass of the sun being converted to gamma rays in a matter of minutes.”

This theory-bruising burst is the subject of research published today in Science Express, the on-line scientific journal of the American Association for the Advancement of Science. A collaborative effort by more than 250 scientists around the world, it is the first gamma-ray burst findings to be reported from the Fermi telescope.

The day after the burst, when Goldstein learned that his first burst was noteworthy, he called his parents in Pineville, Missouri, to share the news that his dreams were coming to fruition.

“The next day I talked to them when I found out what a big deal it was,” said Goldstein, who is completing a catalogue of gamma-ray burst data from an earlier orbiting detector as part of his thesis research. “I have always wanted to work with NASA, so for me this is an ideal place to be.”

Goldstein’s enthusiasm has spread to his family. One of the “honors” accorded a scientist when a burst is seen on his or her shift is the responsibility of writing a circular describing the burst’s coordinates and characteristics for the Gamma-ray burst Coordinates Network (GCN). Since posting his description of the Sept. 16 burst, Goldstein said, his father Scott has taken to routinely checking the GCN to see if his son has posted anything new.

The Sept. 16 burst is a theory bender because theories developed to explain gamma-ray bursts — believed to be the most powerful explosions since the Big Bang — don’t “allow” some of the behaviors seen by the Fermi instruments.

This includes the 23-minute duration. Roaring through space for 12 billion years tends to s-t-r-e-t-c-h waves of electromagnetic energy. Accounting for that stretching means the burst was a solid four minutes in duration when it was created.

“It is difficult to imagine keeping a central gamma-ray ‘engine’ active for that period of time,” said Dr. Michael Briggs, a CSPAR scientist and GBM team member. Another problem is in the energy itself. Most gamma-ray bursts start hot with high-energy gamma rays, then fade to progressively weaker rays. The Sept. 16 burst started “cool,” with the high-energy gamma rays showing up almost five seconds later. That wasn’t expected.

And the burst had both high and low energy photons at the same time for about 200 seconds (also not expected), said Briggs. “It means everything that created both sets of rays happened in the same space at the same time, which is very difficult to explain.”

After not quite three and a half minutes the cooler gamma rays became too weak to detect, but the high-energy rays continued for at least 20 more minutes. (It was still going when the burst moved out of the LAT’s field of view.) If the cataclysmic cosmic event that caused the burst was fading away, why would the weaker gamma rays disappear while the strong ones stick around?

Gamma rays are at the highest end of the energy spectrum, with as much as one million times as much energy per photon as X-rays. Gamma-ray bursts are believed to come from dying stars that explode or collapse, potentially releasing as much energy in a few seconds (or minutes) as our sun will generate in billions of years.

Goldstein was the first (and is still the only) UAHuntsville graduate student to join the GBM team but several post-doctoral students have joined since the success of his first night, swelling the team to about ten. While the GBM instrument notifies team members and other scientists around the world when it detects a burst, someone has to be on-duty tending the instrument at all times. This responsibility is rotated in 12-hour shifts between the team in UAHuntsville’s Cramer Hall and scientists at the Max Planck Institute in Germany.

Phil Gentry | Newswise Science News
Further information:
http://www.uah.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>