Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record-breaking stellar explosion helps understand far-off galaxy

30.08.2012
Nature hath no fury like a dying star – and astronomers couldn’t be happier…

An international research team, led by Edo Berger of Harvard University, made the most of a dying star’s fury to probe a distant galaxy some 9.5 billion light-years distant. The dying star, which lit the galactic scene, is the most distant stellar explosion of its kind ever studied. According to Berger, “It’s like someone turned on a flashlight in a dark room and suddenly allowed us to see, for a short time, what this far-off galaxy looks like, what it is composed of.”


Left: Portion of the Gemini spectrum of PS1-11bam from December 5 containing several interstellar absorption features of Fe II and Mg II at z = 1.566 (black). The error spectrum is shown in blue. For comparison we plot the GRB composite spectrum of Christensen et al. (2011). Right: A zoom-in on the relevant Fe II and Mg II lines demonstrates the similarity to GRB absorption spectra. Also shown is the [O II]3727 emission line at z = 1.567 from the January 1 Gemini spectrum.

The study, published recently in The Astrophysical Journal, describes how the researchers used the exploding star’s light (called an ultra-luminous core-collapse supernova) as a probe to study the gas conditions in the space between the host galaxy’s stars. Berger says the findings reveal that the distant galaxy‘s interstellar conditions appear “reassuringly normal” when compared to those seen in the galaxies of our local universe. “This shows the enormous potential of using the most luminous supernovae to study the early universe,” he says. “Ultimately it will help us understand how galaxies like our Milky Way came to be.”

The discovery of the dying star in this distant galaxy was made using images from the Pan-STARRS1 survey telescope on Haleakala in Maui, Hawai‘i. “These are the types of exciting and unexpected applications that appear when a new capability comes on line,” said John Tonry, one of the study's co-authors and supernovae researcher at the University of Hawai‘i at Manoa's Institute for Astronomy. Tonry adds, “Pan-STARRS is pioneering a new era in deep, wide-field, time-critical astronomy – and this is just the beginning.” After the Pan-STARRS discovery, spectroscopic follow-up studies using the Multiple Mirror Telescope in Arizona and the 8-meter Gemini North telescope on Mauna Kea, Hawai‘i provided the data used by the team to probe the gas of the distant galaxy’s interstellar environment.

The spectra revealed the signatures of a distant ultra-luminous supernova, and equally important, the unique fingerprints of iron and magnesium within the distant galaxy that hosted the explosion. The galaxy itself contains a very young population of stars (~15 to 45 million years old) with a mass totaling some 2 billon Suns.

The ultra-luminous supernova explosion belongs to a relatively recently-identified and special breed of exploding stars. They are some 10-100 times more luminous than their ordinary less-energetic cousins and unusually blue in color. While the process leading to their demise is still being explored, evidence points to the central core-collapse of a star having as much as 100 times the mass of our Sun. The collapse triggers an enormous explosion that blasts prodigious amounts of heavier elements through the star’s enormous outer layers before expanding into space.

Traditionally, astronomers have used two techniques to study distant galaxies: They would either; 1) look directly for chemical elements leaving bright imprints on the galaxy’s spectrum of light; or 2) search indirectly for dark signatures in the spectrum of an even more distant quasar, which reveals chemical elements in an intervening system that have absorbed light along our line of sight.

Recently, astronomers have supplanted these methods with another: seeking dark absorption imprints in the afterglows of “gamma-ray bursts” (GRBs); these brief flashes are the brightest and most energetic explosions in the universe, but they fade away within hours. The method is also limited by the need for expensive Earth-orbiting satellites to first detect and pinpoint a burst’s location with precision before astronomers can make ground-based studies.

“The beauty of studying distant galaxies using ultra-luminous supernovae as a tool is that it eliminates the need for satellites and offers more time for study,” says Alicia Soderberg of Harvard University. “A typical ultra-luminous supernova can take several weeks to fade away.”

The study by Berger and his team provides the first direct demonstration that ultra-luminous supernovae can serve as probes of distant galaxies. Their results suggest that with the future combination of large survey and spectroscopic telescopes ultra-luminous supernovae could be used to probe galaxies 90 percent of the way back to the Big Bang.

Gemini's mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai'i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

The Gemini Observatory provides the astronomical communities in seven partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country's contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the UK Science and Technology Facilities Council (STFC), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

Science Contacts:
Edo Berger
Harvard-Smithsonian Center for Astrophysics
Email: eberger "at" cfa.harvard.edu
Phone: (617) 335-7963
John Tonry Institute for Astronomy
University of Hawai'i – Manoa, Hawai‘i
Email: jt "at" ifa.hawaii.edu
Phone: (808) 956-8701
Media Contacts:
Peter Michaud
Gemini Observatory, Hilo Hawai‘i
Email: pmichaud "at" gemini.edu
Desk: (808) 974-2510
Cell: (808) 936-6643
Roy R. Gal
Institute for Astronomy
University of Hawai'i – Manoa, Hawai‘i
Email: rgal "at" ifa.hawaii.edu
Cell: (301) 728-8637
Desk: (808) 956-6235

Peter Michaud | EurekAlert!
Further information:
http://www.gemini.edu

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>