Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reconstructing what makes us tick

25.04.2018

A new technique drawing on echo state networks fills in the gaps to simulate how arrhythmic electrical signals go chaotic

Cardiac arrhythmia results when the usual symphony of electric pulses that keep the heart's muscles in sync becomes chaotic. Although symptoms are often barely noticeable, arrhythmia leads to hundreds of thousands of deaths from unexpected, sudden cardiac arrest in the United States each year.


Snapshots of the dynamics of the (a) Barkley model and (b) Bueno-Orovio-Cherry-Fenton (BOCF) model at time step n = 1,000 of the test data set.

Credit: Roland S. Zimmermann

A major issue that limits modeling to predict such events is that it is impossible to measure and monitor all the hundreds of variables that come together to make our hearts tick.

A pair of researchers at the Max Planck Institute for Dynamics and Self-Organization developed an algorithm that uses artificial intelligence in new ways to accurately model the electrical excitations in heart muscle.

Their work, appearing in Chaos, from AIP Publishing, draws on partial differential equations describing excitable media and a technique called echo state networks (ESNs) to cross-predict variables about chaotic electrical wave propagations in cardiac tissue.

"In this case, you have to try to get this information about those quantities that you can't measure from quantities that you can measure," said Ulrich Parlitz, an author on the paper and a scientist at the Biomedical Physics Research Group at Max Planck Institute for Dynamics and Self-Organization. "This is a well-known but challenging problem, for which we provided a novel solution employing machine learning methods."

Because machine learning techniques have become more powerful, certain neural networks, such as ESNs, can represent dynamical systems and develop a memory of events over time, which can help understand how arrhythmic electrical signals fall out of sync.

The model that the researchers developed fills in these gaps with a dynamical observer. After training the algorithm on a data set generated by a physical model, Parlitz and his partner, Roland Zimmermann, fed a new time series of the measured quantities to the ESN. This process allowed the observer to cross-predict state vectors. For example, if researchers know the voltage in a certain area of the heart at a point in time, they can reconstruct the flow of calcium currents.

The team verified their approach with data generated by the Barkley and Bueno-Orovio-Cherry-Fenton models, which describe chaotic dynamics that occur in cardiac arrhythmias, even cross-predicting state vectors with noise present. "This paper deals with cross-prediction, but ESNs can also be used for making predictions of future behavior," Parlitz said.

Understanding the electrical properties of the heart is only one part of the picture. Parlitz said that he and his colleagues are looking to include ultrasound measurements of the heart's internal mechanical dynamics. One day, the group hopes to combine different forms of measurements with models of a beating heart's electrical and mechanical features to improve diagnosis and therapies of cardiac diseases. "We broke a big problem down into many smaller ones," Parlitz said.

###

The article, "Observing spatio-temporal dynamics of excitable media using reservoir computing," is authored by Roland S. Zimmermann and Ulrich Parlitz. The article will appear in Chaos April 24, 2018 (DOI: 10.1063/1.5022276). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5022276.

ABOUT THE JOURNAL

Chaos is devoted to increasing the understanding of nonlinear phenomena in all disciplines and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See http://chaos.aip.org.

Media Contact

Julia Majors
media@aip.org
301-209-3090

 @AIPPhysicsNews

http://www.aip.org 

Julia Majors | EurekAlert!

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>