Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rainfall Suspected Culprit in Leaf Disease Transmission

21.11.2011
Rainfalls are suspected to trigger the spread of a multitude of foliar (leaf) diseases, which could be devastating for agriculture and forestry.

Instead of focusing on the large-scale, ecological impact of this problem, researchers from the Massachusetts Institute of Technology (MIT) in Cambridge and the University of Liege in Belgium are studying the phenomenon from a novel perspective: that of a single rain droplet.

“One may easily picture that a raindrop impacting a contaminated leaf grabs some of the pathogens there before being ejected and flying towards some healthy plant in the neighborhood,” says University of Liege assistant professor of engineering Tristan Gilet, who will present the team’s research at the upcoming meeting of the American Physical Society (APS) Division of Fluid Dynamics (DFD) in Baltimore, Md., along with MIT colleagues Lydia Bourouiba, a postdoctoral associate, and John Bush, professor of applied mathematics. But a more plausible scenario, Gilet continues, is that bacteria, viruses, and fungi dissolve into rainwater sitting on the surface of a leaf, and that this disease-carrying rainwater is then pushed off the leaf by other raindrops.

Using a high-speed camera to film artificial rainfall on a series of plants, the team identified two patterns of droplet ejection. The first is direct: a raindrop hits pathogen-infested water on a leaf and splashes some of it off. The second is indirect: a raindrop hits the leaf, whose violent movement ejects some of the disease-carrying water that had been sitting on it. From their modeling and experiments, the team concludes that the direct splashing method is a more efficient disease spreader for relatively large and rigid leaves, while smaller and more pliant leaves are more likely to be affected by the indirect method.

The cost of plant diseases is estimated at three billion dollars a year in the United States alone, the researchers write. They say they hope their work will provide some guidance for farmers, by providing suggestions for the optimal spacing between plants, for example.

The talk, “Foliar disease transmission: insights from fluid dynamics,” is at 3:35 p.m. on Monday, Nov. 21, in Room 309.

Abstract: http://meeting.aps.org/Meeting/DFD11/Event/155026

MORE MEETING INFORMATION
The 64th Annual DFD Meeting is hosted by the Johns Hopkins University, the University of Maryland, the University of Delaware and the George Washington University. Howard University and the U.S. Naval Academy are also participating in the organization of the meeting. It will be held at the Baltimore Convention Center, located in downtown Baltimore, Md. All meeting information, including directions to the Convention Center, is at: http://www.dfd2011.jhu.edu/index.html
USEFUL LINKS
Main Meeting Web Site: http://www.dfd2011.jhu.edu/index.html
Search Abstracts: http://meeting.aps.org/Meeting/DFD11/Content/2194
Directions and Maps: http://www.dfd2011.jhu.edu/venuemaps.html
PRESS REGISTRATION
Credentialed full-time journalists and professional freelance journalists working on assignment for major publications or media outlets are invited to attend the conference free of charge. If you are a reporter and would like to attend, please contact Charles Blue (cblue@aip.org, 301-209-3091).
SUPPORT DESK FOR REPORTERS
A media-support desk will be located in the exhibit area. Press announcements and other news will be available in the Virtual Press Room (see below).
VIRTUAL PRESS ROOM
The APS Division of Fluid Dynamics Virtual Press Room features news releases, graphics, videos, and other information to aid in covering the meeting on site and remotely. See: http://www.aps.org/units/dfd/pressroom/index.cfm

Charles Blue | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications
13.07.2020 | Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, Chinese Academy

nachricht Robust high-performance data storage through magnetic anisotropy
13.07.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Color barcode becomes ISO standard

14.07.2020 | Information Technology

New substance library to accelerate the search for active compounds

14.07.2020 | Life Sciences

Green is more than skin-deep for hundreds of frog species

14.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>