Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rainbow Trapping in Light Pulses

15.07.2010
Over the past decade, scientists have succeeded in slowing pulses of light down to zero speed by letting separate frequency components of the pulse conspire in such a way that a receptive medium through which the pulse is passing can host the information stored in the pulse but not actually absorb the pulse's energy.

Trapping light means either stopping the light temporally or confining the light in space. Scientists have also been able to trap a light pulse in a tiny enclosure bounded by metamaterials; the light pulse retains its form but is kept from moving away.

Previously only light of a short frequency interval could be trapped in this way. Now a group of scientists at Nanjing University in China have shown how a rather wide spectrum of light -- a rainbow of radiation -- can be trapped in a single structure. They propose to do this by sending the light rays into a self-similar-structured dielectric waveguide (SDW) -- essentially a light pipe with a cladding of many layers. Light of different colors propagates separately in (or is contained within) different layers, the layers each being tailored by color. They replace the conventional periodically-spaced, identical cladding layers with a non-periodic, self-similar pattern of successive layers made from two materials, A and B, with slightly different thicknesses and indices of refraction. Self similarity, in this case, means that the pattern of layers successively outwards would be as follows: A, AB, ABBA, ABBABAAB, and so forth.

"The effect might be applied for on-chip spectroscopy or on-chip 'color-sorters,'" says Ruwen Peng, one of the Nanjing researchers. "It might also be used for photon processing and information transport in optical communications and quantum computing." Peng and her associates, who published their results in the American Institute of Physics' journal Applied Physics Letters, expect that they can create trapped "rainbows" for light in many portions of the electromagnetic spectrum, including microwave, terahertz, infrared, and even visible.

The article "'Rainbow' trapped in a self-similar coaxial optical waveguide" by Qing Hu, Jin-Zhu Zhao, Ru-Wen Peng, Feng Gao, Rui-Li Zhang, and Mu Wang was published online in the journal Applied Physics Letters in April, 2010. See: http://link.aip.org/link/APPLAB/v96/i16/p161101/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

ABOUT APPLIED PHYSICS LETTERS
Applied Physics Letters, published by the American Institute of Physics, features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, Applied Physics Letters offers prompt publication of new experimental and theoretical papers bearing on applications of physics phenomena to all branches of science, engineering, and modern technology. Content is published online daily, collected into weekly online and printed issues (52 issues per year). See: http://apl.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>