Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation detector with the lowest noise in the world boosts quantum work

11.10.2019

The nanoscale radiation detector is a hundred times faster than its predecessors, and can function without interruption

Researchers from Aalto University and VTT Technical Research Centre of Finland have built a super-sensitive bolometer, a type of thermal radiation detector.


Colored SEM image of the SNS nanobolometer. The dark oval at the bottom left represents a 1.3-micrometer-long Ralstonia mannitolilytica bacterium.

Credit: Roope Kokkoniemi/Aalto University

The new radiation detector, made of a gold-palladium mixture makes it easier to measure the strength of electromagnetic radiation in real time. Bolometers are used widely in thermal cameras in the construction industry and in satellites to measure cosmic radiation.

The new developments may help bolometers find their way to quantum computers. If the new radiation detector manages to function as well in space as it does in the laboratory, it can also be used to measure cosmic microwave background radiation in space more accurately.

'The new detector is extremely sensitive, and its noise level - how much the signal bounces around the correct value, is only one tenth of the noise of any other bolometer. It is also a hundred times faster than previous low-noise radiation detectors', says Mikko Möttönen, who works as a joint Professor of Quantum Technology at Aalto University and VTT.

At first, the research group built a radiation detector out of gold, but it broke in a few weeks, because gold is not compatible with the aluminium which is used as a superconductor in the detector. To overcome this, the group started to use a mixture of gold and palladium, which is very durable but a rare material in bolometers.

'In addition to the material, the secret of the new radiation detector lies in its really small scale. The nanowire running through the middle of the radiation detector is only about a micrometre long, two hundred nanometres wide and a few tens of nanometres thick', says Roope Kokkoniemi, who studied the bolometer at Aalto University.

A bolometer works by measuring the heating effect of radiation. When a bolometer heats up, its electrical characteristics change, and this can be measured with high precision. The smaller the bolometer, the less radiation is required to heat it.

'A small radiation detector has a low heat capacity, so weak radiation provides a stronger signal', Kokkoniemi explains.

Better protection

'Quantum computers operate in cryostats, extremely cold super-freezers, in which even the smallest amount of excess radiation causes a lot of disturbance. As nanobolometers are very sensitive, they could conveniently measure the level of excess radiation in the cryostat in order to reduce the radiation through better protection', Möttönen says.

The bolometer could also be used to read the value of quantum bits, or qubits. However, for this purpose, the bolometer would need to be even faster.

'In order to read quantum information in superconducting quantum computers several times in a row without it degrading in between, the bolometer would have to be about a hundred times faster', Möttönen says.

Microwave amplifiers were also developed in the research. Their task is to strengthen the signal, but they also add noise. The superconducting microwave amplifier developed by VTT succeeded to halve the bolometer noise in comparison to the best commercial amplifier used.

The bolometer was developed in the Quantum Computing and Devices research group led by Mikko Möttönen. The article was published in the Communications Physics journal on the 11th of October.

Media Contact

Miko Möttönen
mikko.mottonen@aalto.fi
358-505-940-950

 @aaltouniversity

http://www.aalto.fi/en/ 

Miko Möttönen | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s42005-019-0225-6

More articles from Physics and Astronomy:

nachricht Quantum physics: On the way to quantum networks
27.01.2020 | Ludwig-Maximilians-Universität München

nachricht Physicists trap light in nanoresonators for record time
23.01.2020 | ITMO University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

The synthesis of bio-based high-performance polyamide from biogenic residues: A real alternative to crude oil

27.01.2020 | Life Sciences

Superfast insights into cellular events

27.01.2020 | Life Sciences

The 'place' of emotions

27.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>