Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radar gun catches predator shredding turbulence in fusion plasma

11.11.2011
News from the 53rd Annual Meeting of the APS Division of Plasma Physics

Recent experiments carried out at the DIII-D tokamak in San Diego have allowed scientists to observe how fusion plasmas spontaneously turn off the plasma turbulence responsible for most of the heat loss in plasmas confined by toroidal magnetic fields. Using a new microwave instrument based on the same principles as police radar guns, researchers from UCLA observed the complex interplay between plasma turbulence and plasma flows occurring on the surface of tokamak plasmas.


This schematic shows the DIII-D tokamak and layout of the UCLA Doppler Backscattering “radar gun” diagnostic. Credit: Lothar Schmitz (UCLA) and M.R. Wade (General Atomics)

"We found that the turbulent eddies on the surface of the plasma produced surface flows that eventually grow large enough to shred the eddies, turning off the turbulence," said Dr. Lothar Schmitz, who made the measurements with a microwave instrument designed and built by the Plasma Diagnostics Group at UCLA. "Much like the population of predators and prey find a balance in the wild, we find that the plasma flow and the plasma turbulence reach an equilibrium in the tokamak plasma."

The finding is important for fusion research because scientists have been seeking to understand how it is that, in a tokamak (a doughnut-shaped vacuum chamber linked by a toroidal magnetic field), the surface plasma turbulence suddenly switches off as the heating power increases. The reduction in turbulence improves the thermal insulation provided by the magnetic field so that much less power is required to achieve temperatures required for fusion (100 million degrees). Until new measurements were obtained, researchers were not able to observe the very rapid change in edge turbulence which occurs in less than a millisecond over a zone less than 1cm thick.

Dr. Schmitz and his coworkers observed the connection between the flow and the turbulence when looking at tokamak plasmas that jumped back and forth from having low thermal insulation to high thermal insulation many times over a few hundredths of a second before finally settling down to the high insulation state (called H-mode by fusion scientists to distinguish it from the low insulation L-mode state). The H mode was discovered in 1982, but the trigger mechanism of the H mode transition has so far been elusive.

The UCLA group designed their new Microwave Doppler Backscattering Diagnostic tool (operating in a way similar to a radar gun), for use on DIII-D to measure the speed at which turbulent eddies propagate in the plasma, as well as the strength of the turbulence. By aiming an array of microwave "radar guns" at the plasma, the time evolution of plasma flow and turbulence intensity can be followed across an extended radial layer in the plasma boundary.

The microwave measurements reveal the predator-prey oscillations between the plasma flow (predator) and density turbulence (prey) by their relative timing (Figure 2). Like the abundance of prey feeds the population growth of predators, high turbulence near the plasma edge is found to drive high flow velocities which, in turn, shred the turbulent eddies and turn off the turbulence (the blue zones in the lower half of Figure 2), causing the flows to die away. The predator-prey cycle then repeats itself: the Zonal Flow dies away once the turbulence has calmed, thus allowing turbulence to grow again (red yellow zones), which restarts the flow. Now that they've seen the process up close, Dr. Schmitz hopes to use the improved understanding to figure out ways to make it easier to achieve and maintain high thermal insulation in future fusion experiments such as the ITER experiment now under construction in France.

This work supported by the U.S. Department of Energy under DE-FC02-04ER54698.

Abstract:

PI2.00002 Predator-Prey Oscillations and Zonal Flow-Induced Turbulence Suppression Preceding the L-H Transition
Session PI2: Pedestal, SOL and Divertor,
Ballroom BD, Wednesday, November 16, 2011, 2:30PM:00PM

Saralyn Stewart | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Magnetic tuning at the nanoscale
13.11.2019 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht At future Mars landing spot, scientists spy mineral that could preserve signs of past life
13.11.2019 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnetic tuning at the nanoscale

13.11.2019 | Physics and Astronomy

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

13.11.2019 | Physics and Astronomy

Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard

13.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>