Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Racing electrons under control

26.11.2018

Being able to control electronic systems using light waves instead of voltage signals is the dream of physicists all over the world. The advantage is that electromagnetic light waves oscillate at petaherz frequency. This means that computers in the future could operate at speeds a million times faster than those of today. Scientists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have now come one step closer to achieving this goal as they have succeeded in using ultra-short laser impulses to precisely control electrons in graphene.

Current control in electronics that is one million times faster than in today's systems is a dream for many. Ultimately, current control is one of the most important components as it is responsible for data and signal transmission.


The driving laser field (red) 'shakes' electrons in graphene at ultrashort time scales, shown as violet and blue waves. A second laser pulse (green) can control this wave and thus determine the dire

Image: FAU/Christian Heide

Controlling the flow of electrons using light waves instead of voltage signals, as is now the case, could make this dream a reality.

However, up to now, it has been difficult to control the flow of electrons in metals as metals reflect light waves and the electrons inside them cannot be influenced by these light waves.

Physicists at FAU have therefore turned to graphene, a semi-metal that comprises only one single layer of carbon and is so thin that enough light can penetrate to enable electrons to be set in motion.

In an earlier study, physicists at the Chair for Laser Physics had already succeeded in generating an electric signal at a time scale of only one femtosecond by using a very short laser pulse.

This is equivalent to one millionth of one billionth of a second. In these extreme time scales, electrons reveal their quantum nature as they behave like a wave. The wave of electrons glides through the material as it is driven by the light field (the laser pulse).

Under control

The researchers went one step further in the current study. They aimed a second laser pulse at this light-driven wave. This second pulse now enables the electron wave to pass through the material in two dimensions. The second laser pulse can be used to deflect, accelerate or even change the direction of the electron wave.

This enables information to be transmitted by this wave, depending on the exact time, strength and direction of the second pulse. It's possible to go one step further. 'Imagine the electron wave is a wave in water. Waves in water can split because of an obstacle and converge and interfere when they have passed the obstacle.

Depending on how the sub-waves stand in relation to one another, they either amplify or cancel each other out. We can use the second laser pulse to modify the individual sub-waves in a targeted manner and thus control their interference', explains Christian Heide from the Chair of Laser Physics.

'In general, it's very difficult to control quantum phenomena, such as the wave characteristics of electrons in this instance. This is because it's very difficult to maintain the electron wave in a material as the electron wave scatters with other electrons and loses its wave characteristics. Experiments in this field are typically performed at extremely low temperatures. We can now carry out these experiments at room temperature, since we can control the electrons using laser pulses at such high speeds that there is no time left for the scatter processes with other electrons. This enables us to research several new physical processes that were previously not accessible.'

It means the scientists have made significant progress towards realising electronic systems that can be controlled using light waves.

In the next few years they will be investigating whether electrons in other two-dimensional materials can also be controlled in the same way. 'Maybe we will be able to use materials research to modify the characteristics of materials in such a way that it will soon be possible to build small transistors that can be controlled by light', says Heide.

Wissenschaftliche Ansprechpartner:

Further information:
Prof. Dr. Peter Hommelhoff
Phone: +49 9131 8527090
peter.hommelhoff@fau.de

Christian Heide
Phone: +49 9131 8528335
christian.heide@fau.de

Originalpublikation:

The scientists have published their results in the journal Physical Review Letters: 10.1103/PhysRevLett.121.207401

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

More articles from Physics and Astronomy:

nachricht Quantum physics: On the way to quantum networks
27.01.2020 | Ludwig-Maximilians-Universität München

nachricht Physicists trap light in nanoresonators for record time
23.01.2020 | ITMO University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

The synthesis of bio-based high-performance polyamide from biogenic residues: A real alternative to crude oil

27.01.2020 | Life Sciences

Superfast insights into cellular events

27.01.2020 | Life Sciences

The 'place' of emotions

27.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>