Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New "pendulum" for the ytterbium clock

09.03.2012
A transition which can only be excited with difficulty in the ytterbium ion allows an extremely high accuracy

The faster a clock ticks, the more precise it can be. Due to the fact that lightwaves vibrate faster than microwaves, optical clocks can be more precise than the caesium atomic clocks which presently determine time.


The ion trap of the ytterbium clock at PTB.
(picture: PTB)

The Physikalisch-Technische Bundesanstalt (PTB) is even working on several of such optical clocks simultaneously. The model with one single ytterbium ion caught in an ion trap is now experiencing another increase in accuracy. At PTB, scientists have succeeded in exciting a quantum-mechanically strongly "forbidden" transition of this ion and - in particular - in measuring it with extreme accuracy. The optical clock based on it is exact to 17 digits after the decimal point. The results are published in the current edition of the scientific journal "Physical Review Letters".

Optical transitions are the modern counterpart of the pendulum of a mechanical clock. In atomic clocks, the "pendulum" is the radiation which excites the transition between two atomic states of different energy. In the case of caesium atomic clocks, it lies in the microwave range, in the case of optical clocks in the range of laser light so that their "pendulum" oscillates with higher velocity and optical clocks are - consequently - regarded as the atomic clocks of the future.

In the experiment performed at PTB, the scientists devoted themselves to a special forbidden transition. In quantum mechanics, "forbidden" means that the jump between the two energy states of the atoms is almost impossible due to the conservation of symmetry and angular momentum. The excited state can then be very persistent: In the case investigated here, the lifetime of the so-called F-state in the ytterbium ion Yb+ amounts to approx. 6 years. Due to this long lifetime, an extremely narrow resonance - whose linewidth only depends on the quality of the laser used - can be observed during the laser excitation of this state. A narrow resonance line is an important prerequisite for an exact optical clock. At the British National Physical Laboratory (NPL), the sister institute of PTB, the laser excitation of this Yb+-F state from the ground state was achieved for the first time in 1997. As the transition is, however, strongly forbidden, a relatively high laser intensity is required for its excitation. This disturbs the electron structure of the ion as a whole and leads to a shift of the resonance frequency so that an atomic clock based on it would exhibit a rate depending on the laser intensity.

At PTB it has now been possible to show that alternating excitation of the ion with two different laser intensities allows the unperturbed resonance frequency to be determined with high accuracy. Due to this, it has become possible to investigate other frequency shifts often occurring in atomic clocks - e.g. by electric fields or the thermal radiation of the environment. It has turned out that these are unexpectedly small in the case of the Yb+-F state, which can be attributed to the special electronic structure of the state. This is a decisive advantage for the further development of this atomic clock. In the experiments at PTB, the relative uncertainty of the Yb+ frequency was determined with 7 · 10-17. This corresponds to an uncertainty of the atomic clock of only approx. 30 seconds over the age of the universe.

Both groups at NPL and PTB have measured the frequency of the Yb+ transition with their caesium clocks and the results agree within the scope of the uncertainties (1 · 10-15 and 8 · 10-16) which are mainly determined by the caesium clocks. In a research project recently approved within the scope of the European Metrology Research Programme, the two institutes will in future cooperate with other European partners even more intensively in the development of this optical clock. In the case of the Yb+ ion, it is of particular interest that it has two transitions which are suitable for optical clocks: Less strongly forbidden, but also very precise, the excitation of the D-level can be used at a wavelength of 436 nm. This opens up the possibility of investigating the accuracy of the optical clock by frequency comparisons of the two transitions in one ion, without having to refer to a caesium clock.

Scientific publications
PTB experiment:
N. Huntemann et al.: High-accuracy optical clock based on the octupole transition in 171Yb+.
Phys. Rev. Lett. 108,090801 (2012)

NPL experiment:
S. A. King et al.: Absolute frequency measurement of the 2S1/2 - 2F7/2 electric octupole transition in a single ion of 171Yb+ with 10-15 fractional uncertainty. New J. Phys. 14, 013045 (2012)
Contact
Dr. Ekkehard Peik, PTB Department 4.4 Time and Frequency, phone: +49 (0)531) 592-4400, e-mail: ekkehard.peik@ptb.de

Dr. Ekkehard Peik | EurekAlert!
Further information:
http://www.ptb.de

Further reports about: 171Yb+ PTB Yb+ Yb+-F optical clock optical clocks pendulum ytterbium clock

More articles from Physics and Astronomy:

nachricht New measurement exacerbates old problem
02.06.2020 | Max-Planck-Institut für Kernphysik

nachricht Convenient location of a near-threshold proton-emitting resonance in 11B
29.05.2020 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Joined nano-triangles pave the way to magnetic carbon materials

02.06.2020 | Materials Sciences

DC smart grids for production halls

02.06.2020 | Power and Electrical Engineering

Selectively Reactivating Nerve Cells to Retrieve a Memory

02.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>