Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen's scientists discover giant solar twists

24.03.2009
Scientists at Queen's University have made a finding that will help us to understand more about the turbulent solar weather and its affect on our planet.

Along with scientists at the University of Sheffield and California State University, the researchers have detected giant twisting waves in the lower atmosphere of the Sun.

The discovery sheds some light on why the Sun's corona, the region around the Sun, has a much higher temperature than its surface - something that has always puzzled scientists.

The surface of the sun, known as the photosphere, can reach temperatures of 5,000 degrees. To many it would seem logical that the temperature would lower further away from the sun. But, the outer atmosphere, known as the corona, has been shown to reach temperatures of over a million degrees.

The recent discovery by the scientists, published today in the respected journal Science, has revealed the existence of a new breed of solar wave, called the Alfvén wave. This solar wave has been shown to transport energy into the Corona or outer layer.

The waves have been named after Hannes Alfvén who in 1942 received a Nobel Prize for his work in the area. He suggested the existence of the waves but no hard evidence was ever produced, until recently, when Professor Mihalis Mathioudakis and Dr David Jess of Queen's, made the discovery using the Swedish Solar Telescope in the Canary Islands.

The new findings reveal how the waves carry heat and why this happens. The unique magnetic oscillations spread upward from the solar surface to the Sun's corona with an average speed of 20km per second, carrying enough energy to heat the plasma to more than a few million degrees.

Professor Mihalis Mathioudakis, leader of the Queen's University Solar Group, said: "Understanding solar activity and its influence on the Earth's climate is of paramount importance for human kind. The Sun is not as quiet as many people think.

"The solar corona, visible from Earth only during a total solar eclipse, is a very dynamic environment which can erupt suddenly, releasing more energy than ten billion atomic bombs. Our study makes a major advancement in the understanding of how the million-degree corona manages to achieve this feat."

Dr David Jess, from Queen's University Belfast and lead author of the paper written on the discovery said: "Often, waves can be visualized by the rippling of water when a stone is dropped into a pond, or by the motions of a guitar string when plucked.

"Alfvén waves though cannot be seen so easily. In fact, they are completely invisible to the naked eye. Only by examining the motions of structures and their corresponding velocities in the Sun's turbulent atmosphere could we find, for the first time, the presence of these elusive Alfvén waves."

Professor Robert von Fay-Siebenburgen from the University of Sheffield's Department of Applied Mathematics, said: "The heat was on to find evidence for the existence of Alfvén waves. International space agencies have invested considerable resources trying to find purely magnetic oscillations of plasmas in space, particularly in the Sun. These waves, once detected, can be used to determine the physical conditions in the invisible regions of the Sun and other stars."

Professor Keith Mason, CEO of the Science and technology Facilities Council (STFC), who funded the work said: "These are extremely interesting results. Understanding the processes of our Sun is incredibly important as it provides the energy which allows life to exist on Earth and can affect our planet in many different ways. This new finding of magnetic waves in the Sun's lower atmosphere brings us closer to understanding its complex workings and its future effects on the Earth's atmosphere."

For further information please contact Emma Blee, Queen's Press and PR Unit, Tel: 028 90 97 2576 or Lauren Anderson, Media Relations Assistant, University of Sheffield. Tel: Tel: 0114 222 1046 or email: l.h.anderson@sheffield.ac.uk

Lisa Mitchell | EurekAlert!
Further information:
http://www.qub.ac.uk

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>