Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quasars illuminate swiftly swirling clouds around galaxies

08.01.2014
A new study of light from quasars has provided astronomers with illuminating insights into the swirling clouds of gas that form stars and galaxies, proving that the clouds can shift and change much more quickly than previously thought.

Led by University of Illinois at Urbana-Champaign astronomy professor Robert J. Brunner and former graduate student Troy Hacker (now with the U.S. Air Force), the astronomers published their findings in the Monthly Notices of the Royal Astronomical Society.



The team used data from the Sloan Digital Sky Survey, a major eight-year cooperative project to image and map galaxies and quasars. A quasar is a supermassive black hole that emits a tremendous amount of energy, like a shining cosmological beacon.

“Quasars, while very interesting, are merely tools in this study to help us actually find and study what we’re really interested in, which is the invisible gas that surrounds galaxies,” Brunner said. “That gas gets turned into stars, and stars expel gas back out of the galaxy. One of the things we have a hard time understanding is, how is that gas involved in the formation and evolution of a galaxy? So we use quasars as big searchlights.”

The research team looked at data collected from quasar light that traveled through the gas clouds in galaxies between Earth and the quasars. Like meteorologists who can look at sunlight filtering through clouds to learn about the chemistry and dynamics of the clouds, astronomers can learn a lot about the galaxies that the quasar light travels through by measuring how that light is absorbed.

The novel aspect of Brunner and Hacker’s work is that it looks at the quasar light not once, but at two different times. Astronomers have long assumed that any changes in large structures such as nebulae or galaxies would take eons and would not be observable during a human lifetime. But in the span of only five years, Brunner and Hacker saw measurable shifts in a small but substantial number of the giant gas clouds mapped by the Sloan Survey.

“The new aspect of this work is the gas is very distant from the quasar,” Hacker said. “It has no physical interaction with the quasar itself. Something within a galaxy, unassociated with the quasar, is causing the observed change.”

As a possible explanation, the researchers posit that the gas clouds are much smaller than theories point to.

“We’re seeing structures on the order of 10, maybe a hundred, astronomical units, and these are orders of magnitude smaller than what other theories are showing,” Hacker said. One astronomical unit is the distance between the sun and Earth. “It brings up a lot more questions. Small structures in other galaxies may be more prevalent than we thought originally. How did they get there? What does this mean for how galaxies form and evolve over time?”

The questions raised by these findings have implications for how the gas around galaxies is modeled. It is usually modeled as a huge spherical cloud surrounding the galaxy. Because of that size, variability within the cloud would only happen over millions of years. The quick-shifting clouds that the new study found, however, would have to be much smaller or different in composition than previously thought.

“That means it can’t be a spherical ball of gas; it’s more like the clouds in our atmosphere,” Brunner said. “The gas around other galaxies has different types of structures and shapes. The data are telling us that the dynamics are more complex than previously thought, and you can use that to get a limit on the size and motions of these clouds. Now we can start thinking about tying all these things together – what is the chemistry in these clouds, and how are they tied to the stars in these galaxies?”

With the Sloan telescope still recording spectroscopic observations, Brunner and Hacker now can provide a target list of particular quasars to re-evaluate to look for this highly variable phenomenon.

“Now we have the evidence to run a more targeted campaign,” Hacker said. “We can start looking at certain areas where this has been seen. Now that we’ve established this phenomenon, there are so many ways it could go. If we looked at it not just twice, but four, five, six times, we would learn more about these clouds that are moving around and better understand just what is changing.”

“It’s not just all quiet and calm and peaceful out there,” Brunner said. “There are dynamic, explosive, exciting things happening.”

Editor's note: To contact Robert J. Brunner, call 217-244-6099; email bigdog@illinois.edu.

The paper, “Narrow absorption line variability in repeat quasar observations from the Sloan Digital Sky Survey,” is available online:

Robert J. Brunner | University of Illinois
Further information:
http://www.illinois.edu
http://illinois.edu/emailer/forward?emailId=46039&url=http%3A%2F%2Fmnras.oxfordjournals.org%2Fcontent%2F434%2F1%2F163.full&emailAddress

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>