Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The quasar and its Fata Morgana

06.09.2013
Multiple images of a quasar through a gas cloud of our Milky Way

Bonn astronomers discover how the image of a distant quasar splits into multiple images by the effects of a cloud of ionized gas in our own Milky Way Galaxy.


Artist's diagram of the refraction event (not drawn to scale), showing how radio waves from the distant quasar jet are bent by a gas cloud in our own Galaxy, creating multiple images seen with the Very Long Baseline Array. © Bill Saxton, NRAO/AUI/NSF


Grafische Darstellung eines Teils unserer Milchstraße von oben betrachtet. Unsere Sonne befindet sich in ungefähr 25000 Lichtjahren Entfernung vom Zentrum der Milchstraße (im Bild oben rechts). Die gestrichelte Linie zeigt die Richtung zum Quasar 2023+335, die durch die nahegelegene Cygnus-X-Region im lokalen Arm der Milchstraße führt. © R. Hurt, NASA/JPL-CalTech/SSC, nach Abb. 6 in Pushkarev et al.

Such events were predicted as early as in the 1970s, but the first evidence for one now has come from observations performed with the telescope array VLBA and analysed in the Max Planck Institute for Radio Astronomy.

The scientists observed the quasar 2023+335, nearly 3 billion light-years from Earth, as part of a long-term study of ongoing changes in some three hundred quasars. When they examined a series of images of 2023+335, they noted dramatic differences. The differences, they said, are caused by the radio waves from the quasar being bent as they pass through the Milky Way gas cloud, which moved through our line of sight to the quasar. "So as we would see a spot of light get broader or even multiple behind a frosted glass, we see this quasar 'dancing' behind a gas cloud in our own Galaxy", so Anton Zensus, Director at the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany, and member of the international team who has discovered this effect. "This is similar to the fata morgana to be seen in the desert or to the Sun dogs caused by iced clouds with the image of our own star", adds Zensus.

"This event, obviously rare, gives us a new way to learn some of the properties of the turbulent gas that makes up a significant part of our Galaxy," said Alexander Pushkarev from the MPIfR in Bonn, Germany, and the Crimean Astrophysical Observatory, Ukraine, and leader of the international team.

New insights into turbulent galactic gas clouds become tangible

The scientists added 2023+335 to their list of observing targets in 2008. Their targets, in the framework of the MOJAVE project, are quasars and other galaxies with supermassive black holes at their cores. The gravitational energy of the black holes powers "jets" of material propelled to nearly the speed of light. The quasar 2023+335 initially showed a typical structure for such an object, with a bright core and a jet. In 2009, however, the object's appearance changed significantly, showing what looked like a line of bright, new radio-emitting spots.

"We've never seen this type of behaviour before, either among the hundreds of quasars in our own observing program or among those observed in other studies," adds Eduardo Ros from the MPIfR, also a team member in the discovery.

Gas clouds could also refract the light of other quasars

The multiple-imaging event came as other telescopes detected variations in the radio brightness of the quasar, caused, the astronomers said, by scattering of the waves.

The scientists' analysis indicates that the quasar's radio waves were bent by a turbulent cloud of charged gas nearly 5,000 light-years from Earth in the direction of the constellation Cygnus. The cloud's size is roughly comparable to the distance between the Sun and Mercury, and the cloud is moving through space at about 56 kilometres per second (or 200.000 km/h, comparable to the speed of Helios 2, the fastest spacecraft constructed ever).

"Monitoring of 2023+335 over time may yield more such events, so we can learn additional details both about the process by which the waves are scattered and about the gas that does the scattering. Other quasars that are seen through similar regions of the Milky Way also may show this behaviour", concludes Pushkarev.

The monitoring program that yielded this discovery is called MOJAVE (Monitoring Of Jets in Active galactic nuclei with VLBA Experiments), run by an international team of scientists led by Matt Lister from Purdue University. The researchers recently published their results in the journal Astronomy and Astrophysics.

Contact

Dr. Alexander Pushkarev
Max Planck Institute for Radio Astronomy, Bonn
Phone: +49 228 525-255
Email: apushkarev@­mpifr-bonn.mpg.de
Dr. Eduardo Ros
Max Planck Institute for Radio Astronomy, Bonn
Phone: +49 228 525-292
Fax: +49 228 525-229
Email: ros@­mpifr-bonn.mpg.de
Dr. Norbert Junkes
Press and public relations
Max Planck Institute for Radio Astronomy, Bonn
Phone: +49 2 28525-399
Email: njunkes@­mpifr-bonn.mpg.de
Original publication
A.B. Pushkarev, Y.Y. Kovalev, M.L. Lister, T. Hovatta, T. Savolainen, M.F. Aller, H.D. Aller, E. Ros, J.A. Zensus, J.L. Richards, W. Max-Moerbeck, A.C.S. Readhead
VLBA observations of a rare multiple quasar imaging event caused by refraction in the interstellar medium

Astronomy & Astrophysics, July 2013

Dr. Alexander Pushkarev | Max-Planck-Institute
Further information:
http://www.mpg.de/7515949/quasar-cloud-fata-morgana

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>