Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum uncertainty helps solve an old problem

24.07.2019

Controlling how electrons zip through a material is of central importance to build novel electronic devices. How the electronic motion is affected by magnetic fields is an old problem that has not been fully solved, yet has already led to multiple physics Nobel prizes. Now researchers at the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg have solved one of the long-standing problems in the field, namely how a certain symmetry can be restored. Their results were just published in Physical Review Letters.

Electrons moving in a strong magnetic field perform a circular motion due to the Lorentz force, on which electromagnetic induction and the electric motor are based.


Electrons in a 2D lattice interact with a magnetic field (blue arrows), and its quantum fluctuations via the exchange of photons (yellow), which changes how the electrons move through the lattice.

Vasil Rokaj

In the quantum flatland of atomically thin two-dimensional materials, this leads to weird quantum effects like the integer and the fractional quantized Hall effects, which state that the number of Lorentz-deflected charges are not arbitrary but increase in discrete (quantized) steps.

Despite much progress in the field, the fundamental description of how electrons behave in magnetic fields has remained somewhat incomplete.

"There is a deep problem here. Let’s say I have a giant magnetic coil and generate a field that is the same everywhere in space, the electrons in my quantum sheet should feel the same force everywhere," says Vasil Rokaj, PhD student in the MPSD Theory Department and lead author of the study. "But standard textbooks treating the magnetic field classically, fail to account for this physical requirement," he adds.

With a team of researchers led by MPSD Theory Director Angel Rubio and group leaders Michael Ruggenthaler and Michael Sentef, Rokaj and co-author Markus Penz set out to derive new equations that would cure this shortcoming.

"We did not know originally what to expect," adds Ruggenthaler. "In fact, we were interested in a different problem, namely how a quantized rather than classical field in a so-called cavity affects the electronic motion."

To achieve this, Rokaj had to use the formalism of quantum electrodynamics, which was first developed in the 1930s and 1940s to describe how electrons and photons interact. When Rokaj wrote down the equations for the electrons in the solid, the team realized that something interesting happened.

"The magnetic field in a coil is composed of photons, so in principle we should be able to also describe the old problem with our new approach," says Ruggenthaler. "Surprisingly, the quantum uncertainty (or fluctuations) of the field, which is usually not taken into account, helps to restore the fundamental symmetry - that everything should be the same no matter where in space we look."

Angel Rubio adds: "These efforts prove that we are on the right track by tackling the problem in a fully quantum way." In his Theory Department, many researchers work on the large-scale problem of how photons change the properties of matter - from novel chemical reactions to materials that might help build future quantum computers.

"This work proves that it is always worthwhile to take a fresh look at old problems, and to start from the basic principles," says Rubio. "I am sure that further surprises are just waiting to be discovered."

Wissenschaftliche Ansprechpartner:

Vasil Rokaj, M.Sc.
MPSD/CFEL, IMPRS-UFAST
Phone: +49 (0)40 8998 88331
Email: vasil.rokaj@mpsd.mpg.de

Dr. Michael Ruggenthaler
Group Leader
MPSD/CFEL
Phone: +49 (0)40 8998-88319
Email: michael.ruggenthaler@mpsd.mpg.de

Originalpublikation:

Quantum Electrodynamical Bloch Theory with Homogeneous Magnetic Fields
Vasil Rokaj, Markus Penz, Michael A. Sentef, Michael Ruggenthaler, and Angel Rubio
Phys. Rev. Lett. 123, 047202 – Published 23 July 2019

Weitere Informationen:

https://doi.org/10.1103/PhysRevLett.123.047202 original publication

Dr. Joerg Harms | Max-Planck-Institut für Struktur und Dynamik der Materie
Further information:
http://www.mpsd.mpg.de

More articles from Physics and Astronomy:

nachricht Explained: Why water droplets 'bounce off the walls'
27.02.2020 | University of Warwick

nachricht Scientists 'film' a quantum measurement
26.02.2020 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Explained: Why water droplets 'bounce off the walls'

27.02.2020 | Physics and Astronomy

Existing drugs may offer a first-line treatment for coronavirus outbreak

27.02.2020 | Health and Medicine

Rare lizard fossil preserved in amber

27.02.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>