Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum simulation more stable than expected

15.04.2019

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the solution of quantum many-body problems utilizing the concept of digital quantum simulation”, says Markus Heyl from Max Planck Institute for the Physics of Complex in Dresden, Germany.


Digital quantum simulation is intrinsically much more robust than what one might expect from known error bounds on the global many-body wave function.

Credit: IQOQI Innsbruck/Harald Ritsch

Usage Restrictions: The picture may be used for editorial purposes only. It is protected by copyright. The use is free of charge if the reference is mentioned.

“Such simulations could have a major impact on quantum chemistry, materials science and fundamental physics.” Within digital quantum simulation the time evolution of the targeted quantum many-body system is realized by a sequence of elementary quantum gates by discretizing time evolution, called Trotterization.

“A fundamental challenge, however, is the control of an intrinsic error source, which appears due to this discretization”, says Markus Heyl.

Together with Peter Zoller from the Department of Experimental Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Communication at the Austrian Academy of Sciences and Philipp Hauke from the Kirchhoff Institute for Physics and the Institute for Theoretical Physics at the University of Heidelberg they show in a recent paper in Science Advances that quantum localization–by constraining the time evolution through quantum interference–strongly bounds these errors for local observables.

More robust than expected

“Digital quantum simulation is thus intrinsically much more robust than what one might expect from known error bounds on the global many-body wave function”, Heyl summarizes. This robustness is characterized by a sharp threshold as a function of the utilized time granularity measured by the so-called Trotter step size.

The threshold separates a regular region with controllable Trotter errors, where the system exhibits localization in the space of eigenstates of the time-evolution operator, from a quantum chaotic regime where errors accumulate quickly rendering the outcome of the quantum simulation unusable.

“Our findings show that digital quantum simulation with comparatively large Trotter steps can retain controlled Trotter errors for local observables”, says Markus Heyl. “It is thus possible to reduce the number of quantum gate operations required to represent the desired time evolution faithfully, thereby mitigating the effects of imperfect individual gate operations.”

This brings digital quantum simulation for classically challenging quantum many-body problems within reach for current day quantum devices.

Wissenschaftliche Ansprechpartner:

Markus Heyl
Max Planck Institute for the Physics of Complex Systems
phone: +49 351 871 1117
email: heyl@pks.mpg.de
web: https://www.pks.mpg.de/dynamics-in-correlated-quantum-matter/

Peter Zoller
University of Innsbruck
phone: +43 512 507 4780
email: Peter.Zoller@uibk.ac.at
web: https://www.uibk.ac.at/exphys/qo/

Originalpublikation:

Quantum localization bounds Trotter errors in digital quantum simulation. Markus Heyl, Philipp Hauke, Peter Zoller. Science Advances 2019

Dr. Christian Flatz | EurekAlert!
Further information:
http://www.uibk.ac.at/

More articles from Physics and Astronomy:

nachricht A torque on conventional magnetic wisdom
23.07.2019 | University of Illinois College of Engineering

nachricht MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses
22.07.2019 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Hidden dynamics detected in neuronal networks

23.07.2019 | Life Sciences

Towards a light driven molecular assembler

23.07.2019 | Life Sciences

A torque on conventional magnetic wisdom

23.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>