Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum research unifies two ideas offering an alternative route to topological superconductivity

22.04.2020

Researchers from University of Copenhagen have discovered a new way of developing topological superconductivity that may provide a useful route toward the use of Majorana zero modes as the foundation of qubits for quantum information.

A pencil shaped semiconductor, measuring only a few hundred nanometers in diameter, is what researches from the Center for Quantum Devices, Niels Bohr Institute, at University of Copenhagen, in collaboration with Microsoft Quantum researchers, have used to uncover a new route to topological superconductivity and Majorana zero modes in a study recently published in Science.


Hybrid material nanowires with pencil-like cross section (A) at low temperatures and finite magnetic field display zero-energy peaks (B) consistent with topological superconductivity as verified by numerical simulations (C).

Credit: Nbi

The new route that the researchers discovered uses the phase winding around the circumference of a cylindrical superconductor surrounding a semiconductor, an approach they call "a conceptual breakthrough".

"The result may provide a useful route toward the use of Majorana zero modes as a basis of protected qubits for quantum information. We do not know if these wires themselves will be useful, or if just the ideas will be useful," says Charles Marcus, Villum Kann Rasmussen Professor at the Niels Bohr Institute and Scientific Director of Microsoft Quantum Lab in Copenhagen.

What we have found appears to be a much easier way of creating Majorana zero modes, where you can switch them on and off, and that can make a huge difference.

says postdoctoral research fellow, Saulius Vaitiek?nas, who was the lead experimentalist on the study.

Two known ideas combined

The new research merges two already known ideas used in the world of quantum mechanics: Vortex-based topological superconductors and the one-dimensional topological superconductivity in nanowires.

"The significance of this result is that it unifies different approaches to understanding and creating topological superconductivity and Majorana zero modes," says professor Karsten Flensberg, Director of the Center for Quantum Devices.

Looking back in time, the findings can be described as an extension of a 50-year old piece of physics known as the Little-Parks effect. In the Little-Parks effect, a superconductor in the shape of a cylindrical shell adjusts to an external magnetic field, threading the cylinder by jumping to a "vortex state" where the quantum wavefunction around the cylinder carries a twist of its phase.

Charles M. Marcus, Saulius Vaitiek?nas, and Karsten Flensberg from the Niels Bohr Institute at the Microsoft Quantum Lab in Copenhagen.

What was needed was a special type of material that combined semiconductor nanowires and superconducting aluminum. Those materials were developed in the Center for Quantum Devices in the few years.

The particular wires for this study were special in having the superconducting shell fully surround the semiconductor. These were grown by professor Peter Krogstrup, also at the Center for Quantum Devices and Scientific Director of the Microsoft Quantum Materials Lab in Lyngby.

The research is the result of the same basic scientific wondering that through history has led to many great discoveries.

Our motivation to look at this in the first place was that it seemed interesting and we didn't know what would happen.

says Charles Marcus about the experimental discovery, which was confirmed theoretically in the same publication. Nonetheless, the idea may indicate a path forward for quantum computing.

Media Contact

Charlie Marcus
marcus@nbi.ku.dk
45-20-34-11-81

 @uni_copenhagen

http://www.ku.dk 

Charlie Marcus | EurekAlert!
Further information:
http://dx.doi.org/10.1126/science.aav3392

More articles from Physics and Astronomy:

nachricht First radio detection of an extrasolar planetary system around a main-sequence star
04.08.2020 | Max-Planck-Institut für Radioastronomie

nachricht The art of making tiny holes
04.08.2020 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Study clarifies kinship of important plant group

05.08.2020 | Life Sciences

Human cell-based test systems for toxicity studies: Ready-to-use Toxicity Assay (hiPSC)

05.08.2020 | Life Sciences

Molecular Forces: The Surprising Stretching Behaviour of DNA

05.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>