Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Quantum radio' may aid communications and mapping indoors, underground and underwater

03.01.2018

Researchers at the National Institute of Standards and Technology (NIST) have demonstrated that quantum physics might enable communications and mapping in locations where GPS and ordinary cellphones and radios don't work reliably or even at all, such as indoors, in urban canyons, underwater and underground.

The technology may help mariners, soldiers and surveyors, among others. GPS signals don't penetrate very deeply or at all in water, soil or building walls, and therefore, can't be used by submarines or in underground activities such as surveying mines.


NIST physicist Dave Howe aligns a laser beam to pass through a tiny glass cell of rubidium atoms inside the cylindrical magnetic shield. The atoms are the heart of an atomic magnetometer demonstrated as a receiver for magnetic radio. These very low frequency (VLF) digitally modulated magnetic signals can travel farther through building materials, water, and soil than conventional communications signals at higher frequencies and, with further advances in receivers and transmitters, could improve communications and mapping indoors at long range, in urban canyons, underwater and underground.

Credit: Burrus/NIST

GPS also may not work well indoors or even outdoors among city skyscrapers. For soldiers, radio signals may be blocked in environments cluttered by rubble or many interfering electromagnetic devices during military or disaster recovery missions.

The NIST team is experimenting with low-frequency magnetic radio--very low frequency (VLF) digitally modulated magnetic signals--which can travel farther through building materials, water and soil than conventional electromagnetic communications signals at higher frequencies.

VLF electromagnetic fields are already used underwater in submarine communications. But there's not enough data-carrying capacity for audio or video, just one-way texts. Submarines also must tow cumbersome antenna cables, slow down and rise to periscope depth (18 meters, or about 60 feet, below the surface) to communicate.

"The big issues with very low-frequency communications, including magnetic radio, is poor receiver sensitivity and extremely limited bandwidth of existing transmitters and receivers. This means the data rate is zilch," NIST project leader Dave Howe said.

"The best magnetic field sensitivity is obtained using quantum sensors. The increased sensitivity leads in principle to longer communications range. The quantum approach also offers the possibility to get high bandwidth communications like a cellphone has. We need bandwidth to communicate with audio underwater and in other forbidding environments," he said.

As a step toward that goal, the NIST researchers demonstrated detection of digitally modulated magnetic signals, that is, messages consisting of digital bits 0 and 1, by a magnetic-field sensor that relies on the quantum properties of rubidium atoms. The NIST technique varies magnetic fields to modulate or control the frequency--specifically, the horizontal and vertical positions of the signal's waveform--produced by the atoms.

"Atoms offer very fast response plus very high sensitivity," Howe said. "Classical communications involves a tradeoff between bandwidth and sensitivity. We can now get both with quantum sensors."

Traditionally, such atomic magnetometers are used to measure naturally occurring magnetic fields, but in this NIST project, they are being used to receive coded communications signals. In the future, the NIST team plans to develop improved transmitters. The researchers have published their results in the Review of Scientific Instruments.

The quantum method is more sensitive than conventional magnetic sensor technology and could be used to communicate, Howe said. The researchers also demonstrated a signal processing technique to reduce environmental magnetic noise, such as from the electrical power grid, which otherwise limits the communications range. This means receivers can detect weaker signals or the signal range can be increased, Howe said.

For these studies, NIST developed a direct-current (DC) magnetometer in which polarized light is used as a detector to measure the "spin" of rubidium atoms induced by magnetic fields. The atoms are in a tiny glass container. Changes in the atoms' spin rate correspond to an oscillation in the DC magnetic fields, creating alternating current (AC) electronic signals, or voltages at the light detector, which are more useful for communications.

Such "optically pumped" magnetometers, in addition to high sensitivity, offer advantages such as room-temperature operation, small size, low power and cost, and reduced interference. A sensor of this type would not drift or require calibration.

In the NIST tests, the sensor detected signals significantly weaker than typical ambient magnetic-field noise. The sensor detected digitally modulated magnetic field signals with strengths of 1 picotesla (one millionth of the Earth's magnetic field strength) and at very low frequencies, below 1 kilohertz (kHz). (This is below the frequencies of VLF radio, which spans 3-30 kHz and is used for some government and military services.) The modulation techniques suppressed the ambient noise and its harmonics, or multiples, effectively increasing the channel capacity.

The researchers also performed calculations to estimate communication and location-ranging limits. The spatial range corresponding to a good signal-to-noise ratio was tens of meters in the indoor noise environment of the NIST tests, but could be extended to hundreds of meters if the noise were reduced to the sensitivity levels of the sensor. "That's better than what's possible now indoors," Howe said.

Pinpointing location is more challenging. The measured uncertainty in location capability was 16 meters, much higher than the target of 3 meters, but this metric can be improved through future noise suppression techniques, increased sensor bandwidth, and improved digital algorithms that can accurately extract distance measurements, Howe explained.

To improve performance further, the NIST team is now building and testing a custom quantum magnetometer. Like an atomic clock, the device will detect signals by switching between atoms' internal energy levels as well as other properties, Howe said. The researchers hope to extend the range of low-frequency magnetic field signals by boosting the sensor sensitivity, suppressing noise more effectively, and increasing and efficiently using the sensor's bandwidth.

The NIST strategy requires inventing an entirely new field, which combines quantum physics and low-frequency magnetic radio, Howe said. The team plans to increase sensitivity by developing low-noise oscillators to improve the timing between transmitter and receiver and studying how to use quantum physics to surpass existing bandwidth limits.

###

Paper: V. Gerginov, F.C.S. da Silva and D. Howe. 2017. Prospects for magnetic field communications and location using quantum sensors. Review of Scientific Instruments. Published online December 2017. DOI: 10.1063/1.5003821

Media Contact

Ben Stein
bstein@nist.gov
301-975-2763

 @usnistgov

http://www.nist.gov 

Ben Stein | EurekAlert!
Further information:
https://www.nist.gov/news-events/news/2018/01/quantum-radio-may-aid-communications-and-mapping-indoors-underground-and

More articles from Physics and Astronomy:

nachricht When AI and optoelectronics meet: Researchers take control of light properties
20.11.2018 | Institut national de la recherche scientifique - INRS

nachricht How to melt gold at room temperature
20.11.2018 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>