Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum physics: Ménage à trois photon-style

16.10.2019

Physicists from UNIGE have discovered a new quantum property: By placing 3 pairs of photons in a network, it is possible to entangle them and create new ultra-strong correlations

Entanglement is one of the properties specific to quantum particles. When two photons become entangled, for instance, the quantum state of the first will correlate perfectly with the quantum state of the second, even if they are at a distance from one another. But what happens when three pairs of entangled photons are placed in a network?


A quantum network with a triangular structure allows for a fundamentally novel type of quantum correlations.

Credit: © UNIGE

Researchers at the University of Geneva (UNIGE), Switzerland, working in partnership with Tehran's Institute for Research in Fundamental Sciences (IPM), have proved that this arrangement allows for a new form of quantum correlation in theory.

When the scientists forced two photons from separate pairs to become entangled, the connection was also made with their twin photon present elsewhere in the network, forming a highly-correlated triangle. These results, which you can read all about in the journal Physical Review Letters, create the potential for new applications in cryptography while reviving quantum physics at its most fundamental level.

Entanglement involves two quantum particles - photons, for example - forming a single physical system in spite of the distance between them. Every action performed on one of the two photons has an impact on its "twin" photon.

This principle of entanglement leads to quantum non-locality: the measurements and statistics of the properties observed on one of the photons are very closely correlated with the measurements made on the other photon.

"Quantum non-locality was discovered theoretically by John Stewart Bell in 1964," begins Nicolas Brunner, associate professor in the Department of Applied Physics in UNIGE's Faculty of Science. "This showed that photon correlations are exclusively quantum in nature, and so can't be explained by conventional physics. This principle could be used to generate ultra-secure encryption keys."

Is it possible to force photons in a network to become entangled?

But what are the implications of this principle of quantum non-locality when several pairs of photons are placed in a network? "To answer this question, we devised an experiment involving three pairs of photons that were then separated and dispersed to three points forming a triangle", explains Marc-Olivier Renou, who is also a researcher in the Department of Applied Physics. "At each vertex, two photons from a different pair are processed together."

The physicists subsequently forced the two photons at each vertex of the triangle to entangle by making them interact with each other, before measuring them. They finally showed that the statistics arising from these measurements cannot be explained by any local physical theory.

In addition, these statistics are so strongly correlated that they could represent a new form of quantum correlations. "It could become a new version of Bell's theorem, specific to quantum networks", enthuses Nicolas.

This important theoretical discovery underlines the power of quantum correlations in networks, which far exceeds what researchers had originally thought possible. The next step will be to observe these phenomena in the laboratory.

"It's not going to be child's play, because conducting an experiment like this is still extremely difficult for the time being", concludes Nicolas Gisin, a professor in UNIGE's Department of Applied Physics.

Media Contact

Nicolas Brunner
Nicolas.Brunner@unige.ch
41-223-794-368

 @UNIGEnews

http://www.unige.ch 

Nicolas Brunner | EurekAlert!
Further information:
http://dx.doi.org/10.1103/PhysRevLett.123.140401

More articles from Physics and Astronomy:

nachricht A one-way street for light
14.11.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht TU Graz researchers develop new 3D printing for the direct production of nanostructures
14.11.2019 | Technische Universität Graz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Theoretical tubulanes inspire ultrahard polymers

14.11.2019 | Materials Sciences

Can 'smart toilets' be the next health data wellspring?

14.11.2019 | Health and Medicine

New spin directions in pyrite an encouraging sign for future spintronics

14.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>