Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum-physical Model System

06.04.2017

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment with ultracold atoms.


Schematic representation of the filling process: atoms from the external potential wells (represented by the yellow balls) move to the middle well as indicated by the red arrows.

Illustration: David Fischer

Using computer-assisted methods, Prof. Dr Sandro Wimberger and David Fischer from the Institute for Theoretical Physics discovered physical laws that point to the universal properties of this system. Their results were published in the journal “Annalen der Physik”.

Under certain conditions, small particles follow completely different physical laws than those we are accustomed to. “Observing such quantum-physical phenomena, however, is sometimes difficult and requires working with small and isolated systems and to investigate those.

But perfect isolation from the environment is never possible, so external influences can easily destroy the fragile state of the quantum system,” explains primary author David Fischer, a student of physics at Heidelberg University. For experiments in this field, keeping such disruptions under control is of great interest.

“This control enables us not only to ensure the coherence of the system, but it can also be used selectively to effect special conditions,” emphasises Prof. Wimberger.

Ultracold atoms filled into so-called potential wells have proven to be suitable test objects in many experiments. A special laser configuration is used to generate a barrier that locks the atoms in a small area. If multiple wells are then brought close enough together, the atoms have the ability to “tunnel” from one well into an adjacent one.

They are still trapped in the wells, but can move from one well to another, according to the Heidelberg physicists. The temperature of the atoms, which is only just above absolute zero at -273.15 degrees Celsius, favours this quantum-mechanical behaviour.

In developing their model system, David Fischer and Sandro Wimberger reproduced an experiment carried out at the Technical University of Kaiserslautern. There, the behaviour of cold atoms in a chain of potential wells was investigated. The researchers filled the chain with atoms, emptied the middle well, and watched it refill with atoms from the other wells.

“The results of this study suggest that decoherence, i.e. external interference, plays a critical role in this process. What is unclear is which microscopic processes the quantum system uses to interact with the environment,” says David Fischer.

In their computer-assisted simulation of the refilling process, the two Heidelberg researchers tested various hypotheses and explored which processes actually influenced the behaviour of the model system. Among other things, they noticed that the time required for the refilling process varied based on the system parameters. This duration follows a power law, depending on the decoherence rate specified by the researchers.

“In physics, this is often a sign of a universal behaviour of the system that is valid for all scales, hence simplifying the overall problem,” states Prof. Wimberger.

Original publication:
D. Fischer and S. Wimberger: Models for a multimode bosonic tunneling junction, Ann. Phys. (2017) (published online 13 February 2017), doi: 10.1002/andp.201600327

Contact:
Prof. Dr Sandro Wimberger
Institute for Theoretical Physics
Phone +49 6221 54-9449
s.wimberger@thphys.uni-heidelberg.de

Communications and Marketing
Press Office
Phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

Further reports about: microscopic processes physics power law ultracold atoms

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>