Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Mechanics not in Jeopardy - Physicists confirm a decades-old key principle experimentally

23.07.2010
When waves – regardless of whether light or sound – collide, they overlap creating interferences. Austrian and Canadian quantum physicists have now been able to rule out the existence of higher-order interferences experimentally and thereby confirmed an axiom in quantum physics: Born’s rule. They have published their findings in the scientific journal Science.

In quantum mechanics many propositions are made in probabilities. In 1926 German physicist Max Born postulated that the probability to find a quantum object at a certain place at a certain time equals the square of its wave function. A direct consequence of this rule is the interference pattern as shown in the double slit diffraction experiment.

Born’s rule is one of the key laws in quantum mechanics and it proposes that interference occurs in pairs of possibilities. Interferences of higher order are ruled out. There was no experimental verification of this proposition until now, when the research group led by Prof. Gregor Weihs from the University of Innsbruck and the University of Waterloo has confirmed the accuracy of Born’s law in a triple-slit experiment. “The existence of third-order interference terms would have tremendous theoretical repercussions – it would shake quantum mechanics to the core,“ says Weihs. The impetus for this experiment was the suggestion made by physicists to generalize either quantum mechanics or gravitation – the two pillars of modern physics – to achieve unification, thereby arriving at a one all-encompassing theory. “Our experiment thwarts these efforts once again,“ explains Gregor Weihs.

Triple-slit experiment
Gregor Weihs – Professor of Photonics at the University of Innsbruck – and his team are investigating new light sources to be used for transmitting quantum information. He developed a single-photon source, which served as the basis for testing Born’s rule. Photons were sent through a steel membrane mask which has three micrometer sized slits cut into it. Measurements were performed with the slits closed individually resulting in eight independent slit combinations. The data taken was then used to calculate whether Born’s rule applies. “In principle, this experiment is very simple,“ says Gregor Weihs “and we were quite surprised to find that nobody hadn’t performed this experiment before.” However, the physicists were struggling with measurement errors, which they were eventually able to overcome during their two year long Sisyphean task. “Our measurements show that we can rule out the existence of third-order interference up to a certain bound,“ says a happy experimental physicist Weihs. His next step will be to considerably lower the bound with an improved experiment.
Master of light particles
The experiment was performed at the Institute for Quantum Computing at the University of Waterloo in Canada, where Prof. Gregor Weihs worked before his appointment at the University of Innsbruck. Since 2008 he has been setting up his own research group at the Institute for Experimental Physics in Innsbruck, which now comprises twelve group members. The group, whose members come from all over the world, investigates the development of novel single-photon sources and entangled photon pairs from semiconductor nanostructures. The researcher’s ultimate goal is to integrate quantum optical experiments with functions on semiconductor chips.
Weitere Informationen:
http://www.uibk.ac.at/exphys/photonik/ - Research Group Photonics (G. Weihs)
http://www.uibk.ac.at - University of Innsbruck
http://www.iqc.ac.ca - Institute for Quantum Computing, University of Waterloo

Dr. Christian Flatz | idw
Further information:
http://www.uibk.ac.at

Further reports about: Pervasive Computing Photonic Quantum Waterloo light source quantum mechanics

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>