Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Mechanics: Entanglements In Ultracold Atomic Clouds

27.06.2018

Heidelberg researchers verify non-local correlations in clouds of rubidium atoms

A system's state is characterised as entangled or quantum correlated if two or more particles cannot be described as a combination of separate, independent states but only as a whole. Researchers at the Kirchhoff Institute for Physics of Heidelberg University recently succeeded in verifying so-called non-local quantum correlations between ultracold clouds of rubidium atoms. Under the direction of Prof. Dr Markus Oberthaler und Prof. Dr Thomas Gasenzer, the researchers were able to gain important new insights into the character of quantum mechanical many-body systems.


Photo: Philipp Kunkel, SynQS

Schematic representation of the experimental implementation: A cigar-shaped cloud of rubidium atoms (blue dots) is cooled to ultra-cold temperatures. Due to collisions between atoms, quantum correlations, also called entanglement, build up (yellow compounds). The atomic cloud is finally imaged onto a camera with the aid of laser light. Due to the high spatial resolution of the camera, correlations between different parts (A and B) of the condensate, and in particular their quantum mechanical character, can be detected.

The correlations that the theory of quantum mechanics predicts are counter-intuitive. These quantum correlations seem to contradict the Heisenberg uncertainty principle, which states that two properties of an object, such as position and speed, can never be precisely determined at the same time.

In quantum mechanical systems, however, two particles can be prepared so as to accurately predict the position of particle two by localising the position of particle one. Similarly, measuring the speed of one particle allows predicting the speed of the other.

"In this case, the position and speed of particle two do need to be precisely determined prior to measurement," explains Prof. Oberthaler. "The measurement result for particle one cannot be immediately present at particle two's position if the two are spatially separate."

The uncertainty principle actually does not support this simultaneous determination of position and speed. But in quantum mechanics, two objects are not considered separate if they are correlated, i.e., entangled, hence resolving the apparent contradiction.

"If we can prove that measurement results of different observables in one system can actually be predicted by measuring a second, remote system, then we can use this evidence to substantiate entanglement as well – and that's exactly what we did in our experiment," states Philipp Kunkel, the study's primary author.

In their experiment, the researchers used a cloud of approximately 11,000 rubidium atoms, which they cooled to extremely low temperatures. Using laser light, they kept the atoms suspended in a vacuum chamber, which allowed them to exclude any disturbing effects, such as collisions with air molecules.

Because quantum effects are detectable only at very low temperatures, working with ultracold atoms is required. Like when measuring position and speed, these extreme conditions allow the internal state of the particles, often called spin, to be measured as well. "By measuring the spin in one half of the cloud, we were able to predict the spin in the other more accurately than the local uncertainty principle would allow," explains Philipp Kunkel.

The characterisation of quantum mechanical many-body systems is important for future applications such as quantum computers and quantum communication, among others. The most recent Heidelberg research results were published in "Science".

Original publication:
P. Kunkel, M. Prüfer, H. Strobel, D. Linnemann, A. Frölian, T. Gasenzer, M. Gärttner, M.K. Oberthaler: Spatially distributed multipartite entanglement enables EPR steering of atomic clouds. Science (published online 27 April 2018), doi: 10.1126/science.aao2254
Internet information:

Contact:
Prof. Dr. Markus Oberthaler
Kirchhoff Institute for Physics
Phone +49 6221 54-5170
markus.oberthaler@kip.uni-heidelberg.de

Communications and Marketing
Press Office
Phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.kip.uni-heidelberg.de/synqs

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

More articles from Physics and Astronomy:

nachricht First evidence on the source of extragalactic particles
13.07.2018 | Technische Universität München

nachricht Simpler interferometer can fine tune even the quickest pulses of light
12.07.2018 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>