Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum matter without memory loss

07.07.2016

MPQ scientists obtain evidence of many-body localization in a closed quantum system.

During equilibration ordinary many-body systems lose all information about the initial state. Every morning we experience an example for this behaviour. Milk poured into a cup of coffee mixes perfectly and after some time it is impossible to say how exactly the two fluids were put together.

The same behaviour holds for almost all quantum systems. However, recently a new phenomenon called “many-body localization” has been predicted theoretically, which allows well insulated quantum systems to preserve memory of the initial state forever.

Now a team of scientists around Dr. Christian Groß and Professor Immanuel Bloch (Director at MPQ and Chair of Quantum Optics at LMU Munich), in cooperation with David Huse (Princeton University), has obtained evidence of such a behaviour in a two-dimensional quantum system of cold rubidium atoms trapped in an optical lattice (Science, 24 June 2016).

The scientists observed that – beyond a certain degree of disorder imprinted on the particle ensemble in the beginning – the system would relax into a steady state still containing detailed microscopic information about its past. “We were able to observe the transition from a thermalized state into a many-body localized phase”, Christian Groß points out.

“It is the first observation of that kind in a regime that is not accessible with state-of-the-art simulations on classical computers.” The experiment is not only of fundamental interest; the results might also lead to new ways for storing quantum information.

Motivated by the foundational problem of how interacting particles behave in a disordered system, in the 1950s the American physicist Philip Warren Anderson discovered the famous localization phenomenon for non-interacting particles, now called “Anderson localization”.

Here, disorder prevents the particles to move and consequently all transport is stopped. But what happens when disorder comes together with interactions? Will interactions lead to transport and thermalization, or will the localization persist even at high energies? So far, there is no theoretical model that faithfully predicts the evolution of a closed quantum system in more than one dimension under these conditions, although, the possibility for localization has been theoretically suggested.

In order to investigate these questions experimentally, strict requirements on controllability and perfect isolation of the system have to be fulfilled. In the experiment described here, ultracold rubidium atoms are loaded into an optical lattice, a microscopic array of light traps formed by interfering laser beams. The disorder is created by projecting a computer-generated random light pattern onto the optical lattice. As a result of this “disorder”, the depth of each microscopic trap in the lattice potential varies from site to site.

In fact, Prof. Bloch’s group has advanced the experimental tools to such perfection that they can steer the position of the atoms in the artificial light crystal and the interaction between them almost at will. With a high resolution microscope that detects the emitted fluorescence light, the position of each atom can be observed with high precision. Additionally, the atomic density distribution of the initial state can be controlled, and for variable time intervals the evolution of the distribution can be measured with high precision.

These tools at hand, non-thermalizing behaviour can be probed in a conceptionally very simple way. Any thermalized state of a closed system reflects the symmetry of its container – like, for example, water spilled into a round bowl would immediately cover the whole bottom. In analogy, the scientists generate a density step in the initially prepared sample by blowing away half of the atomic distribution with laser radiation. Then they watch how the remaining particles migrate into the empty half.

For small disorders, the initially prepared density step is smeared out fast and the initially empty and filled halves become indistinguishable. However, when the measurement is repeated for strong disorder, traces of the initial state remain and the system does not relax to a thermal state even for very long times. “We observe a fairly sharp onset of non-thermalizing behaviour above a critical value”, says Christian Groß. “This absence of thermalization is remarkable because it persists in a system of interacting particles, even at the high energies probed in the experiment.”

The scientists interpret their observation as the onset of many-body localization in the atomic system. This is of fundamental interest because it means the breakdown of equilibrium statistical mechanics. On the other hand, the persistence of initial state information could be used as a source for quantum information technologies. “It should also be emphasized that we obtain these results for a system size that is far beyond numerically accessible scales”, says Jae-yoon Choi, postdoc at the experiment. Olivia Meyer-Streng

Original publication:

Jae-yoon Choi, Sebastian Hild, Johannes Zeiher, Peter Schauß, Antonio Rubio-Abadal, Tarik Yefsah, Vedika Khemani, David A. Huse, Immanuel Bloch, and Christian Groß
Exploring the many-body localization transition in two dimensions
Science, 24 June 2016, DOI: 10.1126/science.aaf8834 (http://science.sciencemag.org/content/352/6293/1547)

Contact:

Dr. Christian Groß
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 32 905 - 713
E-mail: christian.gross@mpq.mpg.de

Prof. Dr. Immanuel Bloch
Chair of Quantum Optics, LMU Munich
Schellingstr. 4, 80799 Munich
Director at the Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -138
E-mail: immanuel.bloch@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>