Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum many-body systems on the way back to equilibrium

23.02.2015

Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems

Considering that one cubic centimetre of matter already contains about 10 to the 19 to 10 to the 23 particles it is hard to imagine that physicists nowadays can prepare ensembles comprising only some hundred, or even just a handful of atoms. What is more, they have improved their techniques to the extent that they can manipulate such particles individually or jointly and can fine tune their interactions.


Illustration of the various options to influence the properties of quantum many-body systems.

(Theory Division, MPQ)

Driven by on new numerical techniques, powerful supercomputers, and new mathematical techniques the theoretical description of such systems has seen equally impressive progress. In a recent review article in Nature Physics (3rd of February 2015) the team of Prof. Dr. Jens Eisert, Mathis Friesdorf (both from the Dahlem Center for Complex Quantum Systems, Freie Universität Berlin) and Dr. Christian Gogolin, postdoctoral researcher in the Theory Division of Prof. Ignacio Cirac at MPQ (Garching) and research fellow at ICFO (Barcelona), discuss the various quantum systems that have been realised and how they are described theoretically, and give an outlook on promising developments.

Particularly important in the quest for a better understanding of quantum many-body systems are the processes that take place while a system is on its way back to equilibrium after being perturbed externally. Here the challenge is to bridge the gap between the microscopic description of the local dynamics and the well-known macroscopic description in terms of statistical ensembles. Which picture applies depends crucially on the size of the system and the kind of interaction between the particles.

In many experiments systems with short range interactions are realised. Particularly fruitful have been techniques based on ultracold atomic gases in so-called optical lattices – essentially grids of standing waves generated by counterpropagating laser beams. Such systems can for example be used as models for ferromagnetic materials.

A very interesting aspect of condensed matter physics which can also be investigated with such systems is transport – for example that of electrons and thereby electric charges in crystals. In close collaboration experimentalists and theorists thereby find out which parameters determine properties such as the conductivity, and how defects and disorder influence the mobility of particles.

Large quantum many-body systems are often tackled with statistical methods from thermodynamics. Of particular interest is here the temporal evolution when global parameters – such as temperature or an external field – are changed. Such a change can be sudden or can occur more slowly over extended amounts of time, or even happen periodically. The scientists thereby investigate whether, how, and on what time scales systems go to a new equilibrium state.

In many systems "critical" values for the parameters exist at which a sudden transition to a new "phase" with drastically different properties can be observed – analogous to the melting of ice above zero degree Celsius. Understanding the dynamics of such phase transitions is an ongoing challenge for theoreticians.

Such quantum many-body systems have also proven useful as simulators of large and possibly multi-dimensional lattice systems whose non-equilibrium dynamics is not accessible with analytical or numerical tools. Experimental realisations of such systems can thus be regarded as analogue simulators with which these restrictions can be overcome.

Despite the tremendous progress many questions are still open. Some of the riddles of the tendency to evolve back into equilibrium are now understood, but the question of what defines the time scales on which these relaxation processes happen is still pretty much open. Moreover in the future scientists want to investigate not only closed systems, but also those in which interactions with the environment causes decoherence and dissipation. Such, usually harmful and unwanted processes – if carefully engineered – can be used to prepare interesting phases of matter. [OM/CG]

Original publication:
J. Eisert, M. Friesdorf and C. Gogolin
Quantum many-body systems out of equilibrium
Nature Physics, 3 February 2015, DOI:10.1038/Nphys3215

Contact:

Prof. Dr. Ignacio Cirac
Honorary Professor, TU München
Director at the Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -705/-736
Fax: +49 (0)89 / 32 905 -336
E-mail: ignacio.cirac@mpq.mpg.de

Dr. Christian Gogolin
ICFO - The Institute of Photonic Sciences
Mediterranean Technology Park,
Av. Carl Friedrich Gauss, 3,
08860 Castelldefels (Barcelona), Spanien
Phone: +34 935 54 22 37
E-mail: christian.gogolin@icfo.es

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

Further reports about: Max Planck Institute Nature Physics QUANTUM Quantenoptik equilibrium

More articles from Physics and Astronomy:

nachricht First evidence on the source of extragalactic particles
13.07.2018 | Technische Universität München

nachricht Simpler interferometer can fine tune even the quickest pulses of light
12.07.2018 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>