Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum-limited Measurement Method for Nanosensors

12.10.2009
A team of scientists at the Max Planck Institute of Quantum Optics succeeds in applying a novel optical method to nanomechanical oscillators

New fabrication techniques have enabled the development of on-chip mechanical elements whose dimensions are on the nanometre (one millionth mm) scale. Their application, however, has been limited by the lack of sufficiently sensitive techniques for measuring the motion of these tiny devices.


Schematic of the experiment: The nanostrings (yellow) interact with the optical near-field that leaks out of the toroid glass-resonator (violet). When a single string is approached into the optical near-field, the optical resonance frequency of the microresonator gets exponentially reduced. MPQ

A team of scientists around Prof. Tobias Kippenberg (Leader of the Independent Junior Research Group "Laboratory of Photonics and Quantum Measurements" at the Max Planck Institute of Quantum Optics in Garching and Tenure Track Assistant Professor at the EPFL Lausanne) and Prof. Jörg Kotthaus (Professor at LMU Munich) has now successfully developed a novel method at MPQ (Nature Physics, Advance Online Publication, DOI: 10.1038/NPHYS1425).

On-chip glass cylinders with diameters around 50 microns which are capable of storing light played a key role in the study. The scientists could show that the optical near-field, that is the light-field that is leaking out of the glass cylinders, can be used as actuator and sensitive probe for nanomechanical oscillators. This enables measurements that are only limited by the fundamental quantum fluctuations of light.

Thereby, the novel technique for the first time allows measurement sensitivities at the level of the quantum mechanical zero-point fluctuations of the nano-oscillators which is of great interest for fundamental research. But also applications such as single-atom or single-charge detection by atomic or magnetic force microscopy may benefit from the extremely low-noise method with a noise background at the level of the standard quantum-limit.

Nanomechanical oscillators are ideal candidates for studying quantum limits of mechanical motion in an experimental setting. Moreover, they are the basis for a variety of precision measurements. Significant attention has been devoted to developing sensitive readout techniques for motion over the past decade. Optical methods have thereby achieved the best results. However, these have been limited to objects which are larger than the wavelength. Techniques based on electron flow which are applicable to nanoscale objects have so far reached only limited precision.

The MPQ and LMU physicists have now for the first time successfully applied optical methods to nanoscale mechanical oscillators. This is fundamentally challenging as diffraction losses occur as soon as sub-wavelength objects are being looked at. In the present experiment this problem is bypassed by using optical near-fields. A key element is a cylindrical resonator made out of glass with a diameter of approximately 50 microns. The microtoroid can store light if it exhibits the right wavelength, that is if the toroid's optical circumference is an integer multiple of the wavelength. A small portion of the stored light, however, the so-called optical near-field, leaks out of the resonator and can be used as a probe for the nanomechanical oscillators (see Figure). These are strained silicon nitride strings which have typical cross-sections of 100 times 500 nanometres and are 15-40 microns long (nanostrings and microtoroids were fabricated in the clean rooms of Prof. Kotthaus at LMU and at EPFL Lausanne).

If the nanostrings are brought in close proximity to the toroid, that is into its near-field which extends a few hundred nanometres from its surface, both can interact with each other. Thereby the nanostrings act as a dielectric and locally change the refractive index seen by the light field. This leads to a change of the toroid's optical circumference and thus of the toroid's resonance frequency.

The optical resonance frequency shift caused by a single nanostring is so large that even its Brownian motion has a strong and easily measureable influence. This allows highly-sensitive measurements of the strings' motion. The sensitivity to changes in the distance between string and toroid is thereby as small as the quantum-mechanical zero-point fluctuations of the nanostring which are expected at absolute zero temperature and equal the standard quantum-limit.

Besides the high sensitivity to the motion of nanoscale objects there is another important aspect of the work, Georg Anetsberger, PhD student Prof. Kippenberg's group, emphasizes. Equally important is the first experimental demonstration that also nanoscale objects can directly be manipulated by radiation pressure, e.g. cooled down or driven into oscillation. "We can observe that the dipole force of the optical near-field leads to dynamical backaction which can drive the nanostrings into coherent, laser-like oscillations."

The employed method can in principle be applied to all dielectric nanomechanical oscillators which could further foster their use as ultra-sensitive sensors. Once more, Prof. Kippenberg says, the versatility of microtoroids which have been the focus of his research for a few years now becomes evident. "We have developed an experimental platform which could greatly broaden the possible applications of nanomechanical oscillators. Moreover it constitutes an interface which allows the interaction of photons and phonons in such a way that quantum-mechanical effects could become measureable even at room temperature."

[Georg Anetsberger/Olivia Meyer-Streng]

Original publication:
G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M.Weig, J. P. Kotthaus and T. J. Kippenberg
Near-field cavity optomechanics with nanomechanical oscillators
Nature Physics, Advance Online Publication, DOI: 10.1038/NPHYS1425
Contact:
Prof. Dr. Tobias Kippenberg
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 727
Fax: +49 - 89 / 32905 200
E-mail: tobias.kippenberg@mpq.mpg.de
http://www.mpq.mpg.de/k-lab/
Georg Anetsberger
Max Planck Institute of Quantum Optics
Phone.: +49 - 89 / 32905 334
Fax: +49 - 89 / 32905 200
E-mail: georg.anetsberger@mpq.mpg.de
http://www.mpq.mpg.de/k-lab/
Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Press & Public Relations
Tel.: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Further information:
http://www.mpq.mpg.de/k-lab/

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>