Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum light sources pave the way for optical circuits: Light in the nanoworld

01.08.2019

An international team headed up by Alexander Holleitner and Jonathan Finley, physicists at the Technical University of Munich (TUM), has succeeded in placing light sources in atomically thin material layers with an accuracy of just a few nanometers. The new method allows for a multitude of applications in quantum technologies, from quantum sensors and transistors in smartphones through to new encryption technologies for data transmission.

Previous circuits on chips rely on electrons as the information carriers. In the future, photons which transmit information at the speed of light will be able to take on this task in optical circuits. Quantum light sources, which are then connected with quantum fiber optic cables and detectors are needed as basic building blocks for such new chips.


Defects in thin molybdenum sulfide layers, generated by bombardment with helium ions, can serve as nano-light sources for quantum technologies.

Image: Christoph Hohmann / MCQST

An international team headed up by TUM physicists Alexander Holleitner and Jonathan Finley has now succeeded in creating such quantum light sources in atomically thin material layers and placing them with nanometer accuracy.

First step towards optical quantum computers

“This constitutes a first key step towards optical quantum computers,” says Julian Klein, lead author of the study. “Because for future applications the light sources must be coupled with photon circuits, waveguides for example, in order to make light-based quantum calculations possible.”

The critical point here is the exact and precisely controllable placement of the light sources. It is possible to create quantum light sources in conventional three-dimensional materials such as diamond or silicon, but they cannot be precisely placed in these materials.

Deterministic defects

The physicists then used a layer of the semiconductor molybdenum disulfide (MoS2) as the starting material, just three atoms thick. They irradiated this with a helium ion beam which they focused on a surface area of less than one nanometer.

In order to generate optically active defects, the desired quantum light sources, molybdenum or sulfur atoms are precisely hammered out of the layer. The imperfections are traps for so-called excitons, electron-hole pairs, which then emit the desired photons.

Technically, the new helium ion microscope at the Walter Schottky Institute’s Center for Nanotechnology and Nanomaterials, which can be used to irradiate such material with an unparalleled lateral resolution, was of central importance for this.

On the road to new light sources

Together with theorists at TUM, the Max Planck Society, and the University of Bremen, the team developed a model which also describes the energy states observed at the imperfections in theory.

In the future, the researchers also want to create more complex light source patterns, in lateral two-dimensional lattice structures for example, in order to thus also research multi-exciton phenomena or exotic material properties.

This is the experimental gateway to a world which has long only been described in theory within the context of the so-called Bose-Hubbard model which seeks to account for complex processes in solids.

Quantum sensors, transistors and secure encryption

And there may be progress not only in theory, but also with regard to possible technological developments. Since the light sources always have the same underlying defect in the material, they are theoretically indistinguishable. This allows for applications which are based on the quantum-mechanical principle of entanglement.

“It is possible to integrate our quantum light sources very elegantly into photon circuits,” says Klein. “Owing to the high sensitivity, for example, it is possible to build quantum sensors for smartphones and develop extremely secure encryption technologies for data transmission.”

More information:

The work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), by the TUM International Graduate School of Science and Engineering (IGSSE), by the clusters of excellence “Nanosystems Initiative Munich” (NIM), “Munich Center for Quantum Science and Technology” (MCQST) and “e-conversion”, the TUM Institute for Advanced Study, the ExQM doctoral program of the Bavarian Elite Network, by the European Union in the context of Horizon 2020, the Photonics Research Germany funding program, and the Bavarian Academy of Sciences and Humanities.

Alongside scientists from the Technical University of Munich, researchers of the Max Planck Institute for Quantum Optics (Garching), the University of Bremen, The State University of New York (Buffalo, USA) and the National Institute for Materials Science (Tsukuba, Japan) were also involved.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Alexander W. Holleitner
Walter Schottky Institute and Department of Physics
Center for Nanotechnologie and Nanomaterials
Technical University of Munich
Am Coulombwall 4a, 85748 Garching, Germany
Tel.: +49 89 289 11575 – E-Mail: holleitner@wsi.tum.de
Web: https://www.wsi.tum.de/views/sub_group.php?group=Holleitner

Prof. Dr. Jonathan J. Finley
Walter Schottky Institute and Department of Physics
Technical University of Munich
Am Coulombwall 4, 85748 Garching, Germany
Tel.: +49 89 289 12770 – E-Mail: jonathan.finley@wsi.tum.de
Web: https://www.wsi.tum.de/views/groups.php?group=finley

Originalpublikation:

Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation
J. Klein, M. Lorke, M. Florian, F. Sigger, L. Sigl, S. Rey, J. Wierzbowski, J. Cerne, K. Müller, E. Mitterreiter, P. Zimmermann, T. Taniguchi, K. Watanabe , U. Wurstbauer, M. Kaniber, M. Knap, R. Schmidt, J.J. Finley & A.W. Holleitner
Nature Communications, 10, 2755 (2019) – DOI: 10.1038/s41467-019-10632-z
https://doi.org/10.1038/s41467-019-10632-z

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/details/35627/ Link to the press release

Dr. Ulrich Marsch | Technische Universität München

Further reports about: TUM light sources molybdenum nanoworld optical circuits photons quantum computers

More articles from Physics and Astronomy:

nachricht Moon glows brighter than sun in images from NASA's Fermi
16.08.2019 | NASA/Goddard Space Flight Center

nachricht Tiny lensless endoscope captures 3D images of objects smaller than a cell
16.08.2019 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

Jena Laser Technology Conference brings together top international researchers

12.08.2019 | Event News

 
Latest News

Climate change 'disrupts' local plant diversity, study reveals

16.08.2019 | Life Sciences

Finnish discovery brings new insight on the functioning of the eye and retinal diseases

16.08.2019 | Life Sciences

A Rescue Plan for the Ocean

16.08.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>