Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Light from Diamond and Plastic

08.04.2013
Researchers from Humboldt-Universität zu Berlin and Karlsruhe Institute for Technology (KIT) have developed a simple method to fabricate stable sources of single light quanta. The approach published in the Open Access Journal Scientific Reports of Nature Publishing Group is based on a novel hybrid approach combining two completely different material systems.

On the one side, there are tiny fragments of diamond. Besides carbon diamond contains other atoms as natural impurities. These impurity atoms or so-called colour centres are responsible for the yellow or blue colours of natural diamond.


a) Sketch of the direct laser writing process. A femtosecond laser beam is focussed into the photoresist in order to polymerize well defined 3D structures. (b) Scanning electron micrograph of such a structure after development containing several key photonic elements, such as waveguides, couplers and microdisc resonators. Scale bar is 5 µm. Figure: Oliver Benson


(a) Sketch of the experimental configuration. The excitation spot is scanned over the resonator disc. Photons are detected at both waveguide outputs simultaneously. (b) Photon counts collected at one end of the waveguide while scanning the excitation spot with a second objective. The circle highlights the position of a single NV-centre. Shape distortions are due to non closed-loop piezo-scanning. Scale bar is 5 µm. Figure: Oliver Benson

Due to their very small size of only a few millionths of a millimetre, some of the diamond fragments contained only a single colour centre, which could be excited optically with the help of laser light. The colour centre releases its energy by emission of single quanta of light, or photons, which are thus generated in a controlled way one-by-one.

The researchers now mixed the diamond fragments with a special photo resist. A focussed laser beam irradiating the resist layer induced local polymerisation, i.e. the resist was turned into plastic. In this way it was possible to write nearly arbitrary three-dimensional structures, which contain single diamond fragments with single colour centres. The research team at first fabricated optical waveguides and resonators for efficient collection and routing of the photons emitted from the colour centres.

A major advantage of the new hybrid material system is on the one hand the well-established and cost efficient fabrication method and on the other hand the unlimited stability of operation even at room temperature. The next steps are now to combine the novel structures with other optical instrumentation. The researchers expect that in this way numerous applications in the fields of high-resolution microscopy, optical sensing, or quantum information processing can be realized in a reliable and cost-efficient approach.

Further Information:

A. W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, O. Benson, Scientific Reports 3:1577, 1-5 (2013)

Contact:

Prof. Dr. Oliver Benson
oliver.benson@physik.hu-berlin.de
Weitere Informationen:
http://www.nature.com/srep/2013/130402/srep01577/full/srep01577.html

Constanze Haase | idw
Further information:
http://www.hu-berlin.de

More articles from Physics and Astronomy:

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

nachricht Physicists edge closer to controlling chemical reactions
11.12.2018 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>