Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum leap in hi-tech performance

26.09.2008
University of Calgary physicists unveil novel process that promises to kick-start quantum technology sector

For years, physicists have been heralding the revolutionary potential of using quantum mechanics to build a new generation of supercomputers, unbreakable codes, and ultra-fast and secure communication networks.

The brave new world of quantum technology may be a big step closer to reality thanks to a team of University of Calgary researchers that has come up with a unique new way of testing quantum devices to determine their function and accuracy. Their breakthrough is reported in today's edition of Science Express, the advanced online publication of the prestigious journal Science.

"Building quantum machines is difficult because they are very complex, therefore the testing you need to do is also very complex," said Barry Sanders, director of the U of C's Institute for Quantum Information Science and a co-author of the paper. "We broke a bunch of taboos with this work because we have come up with an entirely new way of testing that is relatively simple and doesn't require a lot of large and expensive diagnostic equipment."

Similar to any electronic or mechanical device, building a quantum machine requires a thorough understanding of how each part operates and interacts with other parts if the finished product is going to work properly. In the quantum realm, scientists have been struggling to find ways to accurately determine the properties of individual components as they work towards creating useful quantum systems. The U of C team has come up with a highly-accurate method for analyzing quantum optical processes using standard optical techniques involving lasers and lenses.

"It is a completely different approach to quantum characterization than we have seen before," said post-doctoral researcher Mirko Lobino, the paper's lead author. "This process will be able to tell us if something is working correctly and will hopefully lead the way towards a quantum certification process as we move from quantum science to making quantum technology."

The development of quantum computers is considered the next major advancement in computer processing and memory power but is still in its infancy. Unlike regular silicon-based computers that transmit information in binary units (bits) using 1 and 0, quantum computers use the subatomic physical processes of quantum mechanics to transmit information in quantum bits (qubits) that can exist in more than two states. Computers based on quantum physics are predicted to be far more powerful than computers based on classical physics and could break many of the most advanced codes currently used to secure digital information. Quantum physics is also being used to try and create new, unbreakable encryption systems.

The same research group at the U of C, led by physics professor Alexander Lvovsky, made headlines earlier this year when they were one of two teams to independently prove it's possible to store a special kind of light, called a "squeezed vacuum." That work is considered the initial step towards creating memory systems for quantum computing.

Grady Semmens | EurekAlert!
Further information:
http://www.ucalgary.ca
http://www.sciencexpress.org

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>