Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum dots brighten the future of lighting

09.05.2012
With the age of the incandescent light bulb fading rapidly, the holy grail of the lighting industry is to develop a highly efficient form of solid-state lighting that produces high quality white light.

One of the few alternative technologies that produce pure white light is white-light quantum dots. These are ultra-small fluorescent beads of cadmium selenide that can convert the blue light produced by an LED into a warm white light with a spectrum similar tothat of incandescent light. (By contrast, compact fluorescent tubes and most white-light LEDs emit a combination of monochromatic colors that simulate white light).

Seven years ago, when white-light quantum dots were discovered accidentally in a Vanderbilt chemistry lab, their efficiency was too low for commercial applications and several experts predicted that it would be impossible to raise it to practical levels. Today, however, Vanderbilt researchers have proven those predictions wrong by reporting that they have successfully boosted the fluorescent efficiency ofthese nanocrystals from an original level of three percent to as high as 45 percent.

Potential commercial applications

“Forty-five percent is as high as the efficiency of some commercial phosphors which suggests that white-light quantum dots can now be used in some special lighting applications,” said Sandra Rosenthal, the Jack and Pamela Egan Chair of Chemistry, who directed the research which is described online in the Journal of the American Chemical Society. “The fact that we have successfully boosted their efficiency by more than 10 times also means that it should be possible to improve their efficiency even further.”

The general measure for the overall efficiency of lighting devices is called luminous efficiency and itmeasures the amount of visible light (lumens) a device produces per watt. An incandescent light bulb produces about 15 lumens/watt, while a fluorescent tubes put out about 100 lumens/watt. White light LEDs currently on the market range from 28 to 93 lumens/watt.

“We calculate that if you combine our enhanced quantum dots with the most efficient ultraviolet LED, the hybrid device would have a luminous efficiency of about 40 lumens/watt,” reportedJames McBride, research assistant professor of chemistry who has been involved in the research from its inception. “There is lots of room to improve the efficiency of UV LEDS and the improvements would translate directly into a higher efficiencies in the hybrid.”

An accidental discovery

Quantum dots were discovered in 1980. They are beads of semiconductor material – the stuff from whichtransistors are made – that are so small that they have unique electronic properties, intermediate between those of bulk semiconductors and individual molecules. One of their useful properties is fluorescence that produces distinctive colors determined by the size of the particles. As the nanocrystal’s size shrinks the light it emits shifts from red to blue. The Vanderbilt discovery was that ultra-small quantum dots, containing only 60 to 70 atoms, emit white instead of monochromatic light.

“These quantum dots are so small that almost all of the atoms are on the surface, so the white-light emission is intrinsically a surface phenomena,” said Rosenthal.

One of the first methods various groups used in the attempt to brighten the nanocrystals was “shelling” – growing a shell around them made of a different material, like zinc sulfide. Unfortunately, the shells extinguished the white light effect and the shelled quantum dots produced only colored light.

Chemists followed their noses

Following a lead from some research done at the University of North Carolina, the researchers decided to see if treating the quantum dots with metal salts would have a brightening effect. They noticed that some of the salts seemed to produce a small – 10 to 20 percent – but noticeable improvement.

“They were acetate salts and they smelled a bit like acetic acid,” said McBride. “We knew that acetic acid binds to the quantum dots so we decided to give it a try.”

The decision to follow their nose proved to be fortunate. The acetic acid treatment bumped up the quantum dots fluorescent efficiency from eight percent to 20 percent!

Acetic acid is a member of the carbocyclic acid family. So the researchers tried the other members in the family. They found that the simplest and most acidic member – formic acid, the chemical that ants use to mark their paths – worked the best, pushing the efficiency as high as 45 percent.

The brightness boost had an unexpected side effect. It shifted the peak of the color spectrum of the quantum dots slightly into the blue. This is ironic because the major complaint of white-light LEDs is that the light they produce has an unpleasant blue tint. However, the researchers maintain that they know how to correct the color-balance of the boosted light.

The researchers’ next step is to test different methods for encapsulating the enhanced quantum dots.

Other contributors to the study include graduate students Teresa E. Rosson, Sarah M. Claiborne and undergraduate research student Benjamin Stratton, who is now at Columbia University.

The work was supported by a grant from the National Science Foundation.
Read the 2005 story about the original discovery: Quantum dots that produce white light could be the light bulb’s successor

Visit Research News @ Vanderbilt for more research news from Vanderbilt. [Media Note: Vanderbilt has a 24/7 TV and radio studio with a dedicated fiber optic line and ISDN line. Use of the TV studio with Vanderbilt experts is free, except for reserving fiber time.]

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>