Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum dots brighten the future of lighting

09.05.2012
With the age of the incandescent light bulb fading rapidly, the holy grail of the lighting industry is to develop a highly efficient form of solid-state lighting that produces high quality white light.

One of the few alternative technologies that produce pure white light is white-light quantum dots. These are ultra-small fluorescent beads of cadmium selenide that can convert the blue light produced by an LED into a warm white light with a spectrum similar tothat of incandescent light. (By contrast, compact fluorescent tubes and most white-light LEDs emit a combination of monochromatic colors that simulate white light).

Seven years ago, when white-light quantum dots were discovered accidentally in a Vanderbilt chemistry lab, their efficiency was too low for commercial applications and several experts predicted that it would be impossible to raise it to practical levels. Today, however, Vanderbilt researchers have proven those predictions wrong by reporting that they have successfully boosted the fluorescent efficiency ofthese nanocrystals from an original level of three percent to as high as 45 percent.

Potential commercial applications

“Forty-five percent is as high as the efficiency of some commercial phosphors which suggests that white-light quantum dots can now be used in some special lighting applications,” said Sandra Rosenthal, the Jack and Pamela Egan Chair of Chemistry, who directed the research which is described online in the Journal of the American Chemical Society. “The fact that we have successfully boosted their efficiency by more than 10 times also means that it should be possible to improve their efficiency even further.”

The general measure for the overall efficiency of lighting devices is called luminous efficiency and itmeasures the amount of visible light (lumens) a device produces per watt. An incandescent light bulb produces about 15 lumens/watt, while a fluorescent tubes put out about 100 lumens/watt. White light LEDs currently on the market range from 28 to 93 lumens/watt.

“We calculate that if you combine our enhanced quantum dots with the most efficient ultraviolet LED, the hybrid device would have a luminous efficiency of about 40 lumens/watt,” reportedJames McBride, research assistant professor of chemistry who has been involved in the research from its inception. “There is lots of room to improve the efficiency of UV LEDS and the improvements would translate directly into a higher efficiencies in the hybrid.”

An accidental discovery

Quantum dots were discovered in 1980. They are beads of semiconductor material – the stuff from whichtransistors are made – that are so small that they have unique electronic properties, intermediate between those of bulk semiconductors and individual molecules. One of their useful properties is fluorescence that produces distinctive colors determined by the size of the particles. As the nanocrystal’s size shrinks the light it emits shifts from red to blue. The Vanderbilt discovery was that ultra-small quantum dots, containing only 60 to 70 atoms, emit white instead of monochromatic light.

“These quantum dots are so small that almost all of the atoms are on the surface, so the white-light emission is intrinsically a surface phenomena,” said Rosenthal.

One of the first methods various groups used in the attempt to brighten the nanocrystals was “shelling” – growing a shell around them made of a different material, like zinc sulfide. Unfortunately, the shells extinguished the white light effect and the shelled quantum dots produced only colored light.

Chemists followed their noses

Following a lead from some research done at the University of North Carolina, the researchers decided to see if treating the quantum dots with metal salts would have a brightening effect. They noticed that some of the salts seemed to produce a small – 10 to 20 percent – but noticeable improvement.

“They were acetate salts and they smelled a bit like acetic acid,” said McBride. “We knew that acetic acid binds to the quantum dots so we decided to give it a try.”

The decision to follow their nose proved to be fortunate. The acetic acid treatment bumped up the quantum dots fluorescent efficiency from eight percent to 20 percent!

Acetic acid is a member of the carbocyclic acid family. So the researchers tried the other members in the family. They found that the simplest and most acidic member – formic acid, the chemical that ants use to mark their paths – worked the best, pushing the efficiency as high as 45 percent.

The brightness boost had an unexpected side effect. It shifted the peak of the color spectrum of the quantum dots slightly into the blue. This is ironic because the major complaint of white-light LEDs is that the light they produce has an unpleasant blue tint. However, the researchers maintain that they know how to correct the color-balance of the boosted light.

The researchers’ next step is to test different methods for encapsulating the enhanced quantum dots.

Other contributors to the study include graduate students Teresa E. Rosson, Sarah M. Claiborne and undergraduate research student Benjamin Stratton, who is now at Columbia University.

The work was supported by a grant from the National Science Foundation.
Read the 2005 story about the original discovery: Quantum dots that produce white light could be the light bulb’s successor

Visit Research News @ Vanderbilt for more research news from Vanderbilt. [Media Note: Vanderbilt has a 24/7 TV and radio studio with a dedicated fiber optic line and ISDN line. Use of the TV studio with Vanderbilt experts is free, except for reserving fiber time.]

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>