Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New quantum dot technique combines best of optical and electron microscopy

13.06.2013
It's not reruns of "The Jetsons", but researchers working at the National Institute of Standards and Technology (NIST) have developed a new microscopy technique that uses a process similar to how an old tube television produces a picture—cathodoluminescence—to image nanoscale features.

Combining the best features of optical and scanning electron microscopy, the fast, versatile, and high-resolution technique allows scientists to view surface and subsurface features potentially as small as 10 nanometers in size.


Much like in an old tube television where a beam of electrons moves over a phosphor screen to create images, the new microscopy technique works by scanning a beam of electrons over a sample that has been coated with specially engineered quantum dots. The dots absorb the energy and emit it as visible light that interacts with the sample at close range. The scattered photons are collected using a similarly closely placed photodetector (not depicted), allowing an image to be constructed.

Credit: Dill/NIST

The new microscopy technique, described in the journal AIP Advances,* uses a beam of electrons to excite a specially engineered array of quantum dots, causing them to emit low-energy visible light very close to the surface of the sample, exploiting so-called "near-field" effects of light. By correlating the local effects of this emitted light with the position of the electron beam, spatial images of these effects can be reconstructed with nanometer-scale resolution.

The technique neatly evades two problems in nanoscale microscopy, the diffraction limit that restricts conventional optical microscopes to resolutions no better than about half the wavelength of the light (so about 250 nm for green light), and the relatively high energies and sample preparation requirements of electron microscopy that are destructive to fragile specimens like tissue.

NIST researcher Nikolai Zhitenev, a co-developer of the technique, had the idea a few years ago to use a phosphor coating to produce light for near-field optical imaging, but at the time, no phosphor was available that was thin enough. Thick phosphors cause the light to diverge, severely limiting the image resolution. This changed when the NIST researchers teamed with researchers from a company that builds highly engineered and optimized quantum dots for lighting applications. The quantum dots potentially could do the same job as a phosphor, and be applied in a coating both homogenous and thick enough to absorb the entire electron beam while also sufficiently thin so that the light produced does not have to travel far to the sample.

The collaborative effort found that the quantum dots, which have a unique core-shell design, efficiently produced low-energy photons in the visible spectrum when energized with a beam of electrons. A potential thin-film light source in hand, the group developed a deposition process to bind them to specimens as a film with a controlled thickness of approximately 50 nm.

Much like in an old tube television where a beam of electrons moves over a phosphor screen to create images, the new technique works by scanning a beam of electrons over a sample that has been coated with the quantum dots. The dots absorb the electrons' energy and emit it as visible light that interacts with and penetrates the surface over which it has been coated. After interacting with the sample, the scattered photons are collected using a closely placed photodetector, allowing an image to be constructed. The first demonstration of the technique was used to image the natural nanostructure of the photodetector itself. Because both the light source and detector are so close to the sample, the diffraction limit doesn't apply, and much smaller objects can be imaged.

"Initially, our research was driven by our desire to study how inhomogeneities in the structure of polycrystalline photovoltaics could affect the conversion of sunlight to electricity and how these devices can be improved," says Heayoung Yoon, the lead author of the paper. "But we quickly realized that this technique could also be adapted to other research regimes, most notably imaging for biological and cellular samples, wet samples, samples with rough surfaces, as well as organic photovoltaics. We are anxious to make this technique available to the wider research community and see the results."

This work was a collaboration among researchers from NIST; the Maryland NanoCenter at the University of Maryland, College Park; Worcester Polytechnic Institute; QD Vision; and Sandia National Laboratories.

* H. Yoon, Y, Lee, C. Bohn, S. Ko, A. Gianfrancesco, J. Steckel, S. Coe-Sullivan, A. Talin and N. Zhitenev. High-resolution photocurrent microscopy using near-field cathodoluminescence of quantum dots. AIP Advances. Published online 10 June 2013.

Mark Esser | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>